# Recursive PAC-Bayes

Yevgeny Seldin

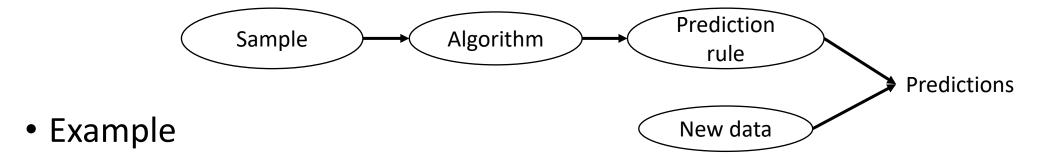
Post-Bayes Seminar Series 7 October 2025

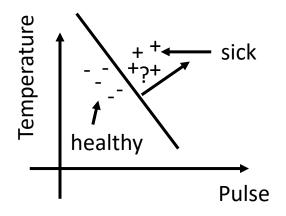
#### Outline

- Supervised learning general background on generalization guarantees
- Occam's razor "the little brother of PAC-Bayes" [skipped]
- PAC-Bayesian analysis (including distinctions with Bayesian learning)
- Recursive PAC-Bayes sequential prior updates
- Weighted majority votes (if we reach it...)

# Supervised Learning

Protocol

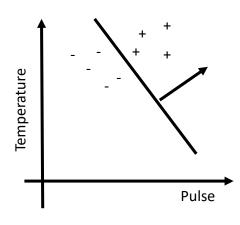




# Supervised Learning

#### Notations

- $\mathcal{X}$  sample space (e.g.,  $\mathcal{X} = \mathbb{R}^d$ )
- $\mathcal{Y}$  label space (e.g., Classification:  $\mathcal{Y}=\{\pm 1\}$ ; Regression:  $\mathcal{Y}=\mathbb{R}$ )
- $S = \{(X_1, Y_1), ..., (X_n, Y_n)\}$  training sample (where  $X_i \in \mathcal{X}, Y_i \in \mathcal{Y}$ )
- $h: \mathcal{X} \to \mathcal{Y}$  a prediction rule / hypothesis
- ${\mathcal H}$  a set of prediction rules / a hypothesis set



#### Evaluation

•  $\ell(y', y)$  – loss/error/risk function Loss for predicting y' when the reality is y

- Examples:
  - Zero-one loss

$$\ell(y',y) = \mathbb{I}(y' \neq y) = \begin{cases} 0, & \text{if } y' = y \\ 1, & \text{if } y' \neq y \end{cases}$$

• Squared loss  $\ell(y', y) = (y' - y)^2$ 

• Absolute loss  $\ell(y', y) = |y' - y|$ 

 The loss function determines the cost of different mistakes!!!

Depends on the

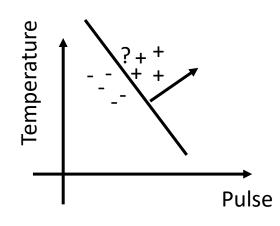
house

• Example: Fire alarm

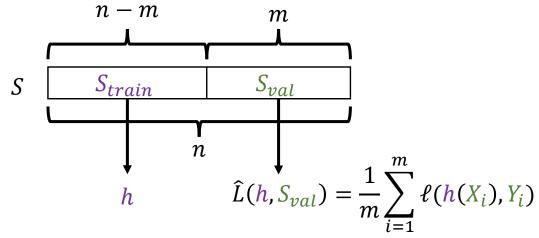
| y' y       | no fire | fire /    |  |
|------------|---------|-----------|--|
| no fire    | 0       | 5.000.000 |  |
| fire       | 2.000   | 0         |  |
| "constant" |         |           |  |

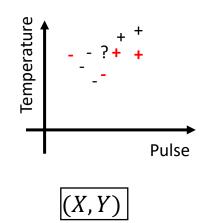
# The quantity of interest — Expected Loss

- Expected loss/error/risk
  - $L(h) = \mathbb{E}_{(X,Y) \sim p(x,y)}[\ell(h(X),Y)]$
- Assumption
  - (X,Y) are sampled from a fixed (unknown) distribution p(X,Y)
- Challenge: p(X,Y) is unknown, and so is L(h)
- What can we say about L(h)?
  - Use empirical loss  $\hat{L}(h,S) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i),Y_i)$  as an estimate
- Key question: how close is  $\widehat{L}(h,S)$  to L(h)?



#### Validation





- Assumptions
  - $\{(X_1, Y_1), ..., (X_m, Y_m)\}$  are independent identically distributed (i.i.d.)
  - And come from the same distribution as new samples (X, Y)
- $\hat{L}(h, S_{val})$  is an **unbiased** estimate of L(h)
  - $\mathbb{E}\big[\hat{L}(h, S_{val})\big] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\ell(h(X_i), Y_i)\right] = \frac{1}{m}\sum_{i=1}^{m}\mathbb{E}\left[\ell(h(X_i), Y_i)\right] = L(h)$
  - From the perspective of h the samples in  $S_{val}$  are indistinguishable from new samples (X,Y)

What can be said about L(h) based on  $\widehat{L}(h, S_{val})$ ?

•  $\widehat{L}(h, S_{val})$  is an unbiased estimate of L(h)

- But consider m=1 and the zero-one loss:
  - $\widehat{L}(h, S_{val}) \in \{0,1\}$  never close to L(h)!

Being unbiased is neither sufficient, nor necessary

We need concentration!

### Formalization

• 
$$Z_i = \ell(h(X_i), Y_i)$$

• If  $(X_1, Y_1), \dots, (X_n, Y_n)$  are independent identically distributed (i.i.d.), then  $Z_1, \dots, Z_n$  are also i.i.d.

• 
$$L(h) = \mathbb{E}[\ell(h(X), Y)] = \mathbb{E}[Z_1] = \mu$$

• 
$$\hat{L}(h, S_{val}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i) = \frac{1}{n} \sum_{i=1}^{n} Z_i = \hat{\mu}_n$$

• How far can  $\hat{\mu}_n$  be from  $\mu$ ?

## Frequentist vs. Bayesian paradigms

#### Bayesian paradigm

- Parameters of data-generating process are sampled from an unknown distribution
- Bayesian learning starts with a prior distribution  $\pi(\theta)$  on the parameters and, given evidence S, applies the Bayes rule

• 
$$\rho(\theta|S) = \frac{\pi(\theta)\mathbb{P}(S|\theta)}{\mathbb{P}(S)}$$

- The probabilities are over observations and parameters (both are random variables)
- The loss function is not part of the basic framework!

#### Frequentist paradigm

- The parameters are unknown, but fixed
- Frequentists bound the probability that some [loss] function of the observations  $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \ell(h(X_i), Y_i)$  deviates significantly from its expectation  $L(h) = \mu = \mathbb{E}[\hat{\mu}_n]$
- The random variable is  $\hat{\mu}_n$ , but not  $\mu$ ; and the probability is over  $\hat{\mu}_n$ , but not  $\mu$

## Frequentist vs. Bayesian paradigms

### PAC-Bayesian analysis takes the frequentist path

### PAC = Probably Approximately Correct

- Frequentist paradigm
  - The parameters are unknown, but fixed
  - Frequentists bound the probability that some [loss] function of the observations  $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \ell(h(X_i), Y_i)$  deviates significantly from its expectation  $L(h) = \mu = \mathbb{E}[\hat{\mu}_n]$
  - The random variable is  $\hat{\mu}_n$ , but not  $\mu$ ; and the probability is over  $\hat{\mu}_n$ , but not  $\mu$

### Concentration of measure – Hoeffding's inequality

• Theorem (Hoeffding's inequality): Let  $Z_1, ..., Z_n$  be i.i.d.,  $Z_i \in [0,1]$ , then for any  $\varepsilon > 0$ :

$$\mathbb{P}\left(\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]-\frac{1}{n}\sum_{i=1}^{n}Z_{i}\geq\varepsilon\right)\leq e^{-2n\varepsilon^{2}}$$
 Equivalently, for any  $\delta\in(0,1]$ :  $\mathbb{P}\left(\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]\geq\frac{1}{n}\sum_{i=1}^{n}Z_{i}+\sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right)\leq\delta$ 

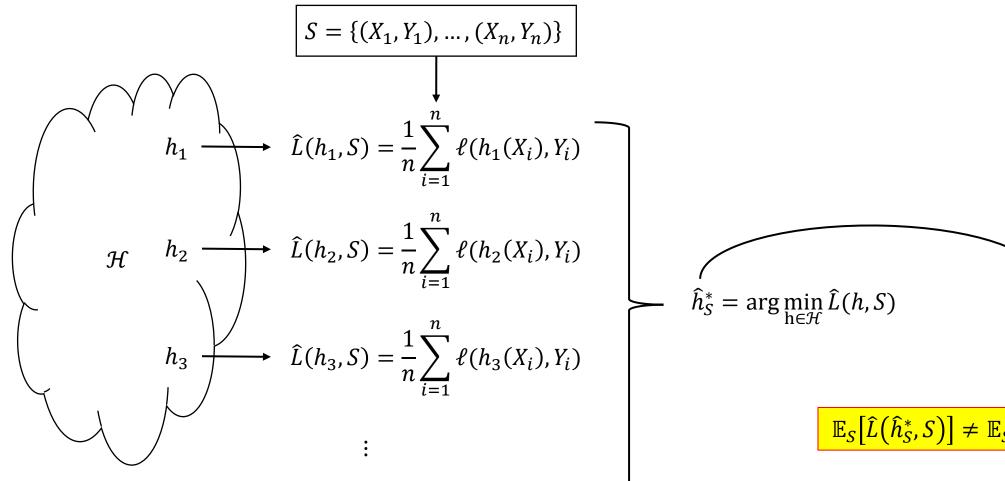
• Corollary: Assume that  $\ell$  is bounded in the [0,1] interval. Assume that we have a single prediction rule h that is independent of S. Then for any  $\delta \in (0,1]$ :

$$\mathbb{P}\left(L(h) \ge \hat{L}(h,S) + \sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right) \le \delta$$

Equivalently, with probability at least  $1 - \delta$ :  $L(h) \leq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}$ .

The probability is over  $\hat{L}(h, S)$ , but not L(h)!!!

# Learning by Selection



(X,Y) $L(\hat{h}_S^*) = \mathbb{E}[\ell(\hat{h}_S^*(X), Y)]$  $\mathbb{E}_{S}[\hat{L}(\hat{h}_{S}^{*},S)] \neq \mathbb{E}_{S}[L(\hat{h}_{S}^{*})]$ 

Hoeffding does not apply to  $L(\hat{h}_S^*) - \hat{L}(\hat{h}_S^*, S)!$ 

# Selection from finite $\mathcal{H}(|\mathcal{H}| = M)$

$$L(\hat{h}_{S}^{*}) \neq \mathbb{E}_{S}[\hat{L}(\hat{h}_{S}^{*},S)]$$
We cannot apply Hoeffding! 
$$\mathbb{P}(L(\hat{h}_{S}^{*}) \geq \hat{L}(\hat{h}_{S}^{*},S) + \varepsilon)$$

$$\leq \mathbb{P}(\exists h \in \mathcal{H} \colon L(h) \geq \hat{L}(h,S) + \varepsilon)$$
(Union bound) 
$$\leq \sum_{h \in \mathcal{H}} \mathbb{P}(L(h) \geq \hat{L}(h,S) + \varepsilon)$$
(Hoeffding) 
$$\leq \sum_{h \in \mathcal{H}} e^{-2n\varepsilon^{2}}$$

$$= \underbrace{M}_{Selection} \times \underbrace{e^{-2n\varepsilon^{2}}}_{Concentration}$$

$$= \delta$$
Solving for  $\varepsilon$  gives  $\varepsilon = \sqrt{\frac{\ln \frac{M}{\delta}}{2n}}$ 
Theorem: 
$$\mathbb{P}\left(L(\hat{h}_{S}^{*}) \geq \hat{L}(\hat{h}_{S}^{*},S) + \sqrt{\frac{\ln \frac{M}{\delta}}{2n}}\right) \leq \delta$$

$$\widehat{L}(h_1,S) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_1(X_i),Y_i)$$

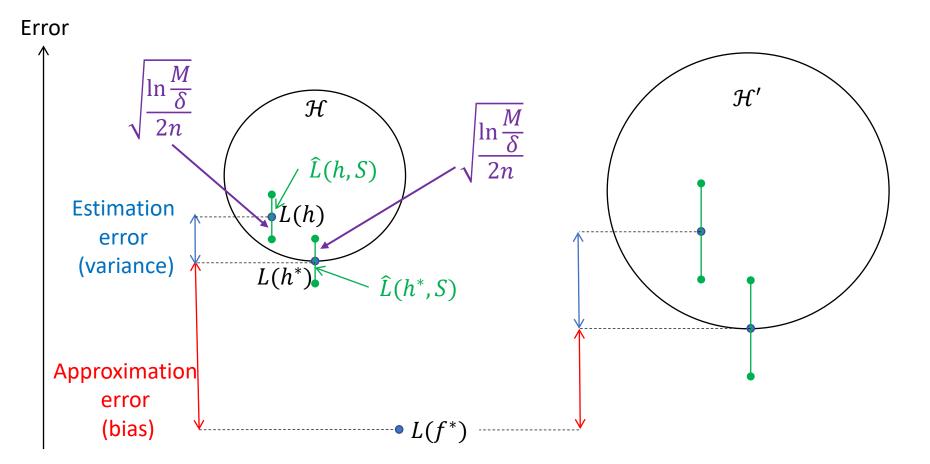
$$\widehat{L}(h_2,S) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_2(X_i),Y_i)$$

$$\widehat{L}(h_3,S) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_3(X_i),Y_i)$$

$$\widehat{h}_S^* = \arg\min_{\mathbf{h} \in \mathcal{H}} \widehat{L}(h,S)$$

$$\vdots$$

### Approximation-Estimation (bias-variance) trade-off



Estimation error  $L(h) - L(h^*)$  can be up to  $2\sqrt{\frac{\ln \frac{M}{\delta}}{2n}}$ 

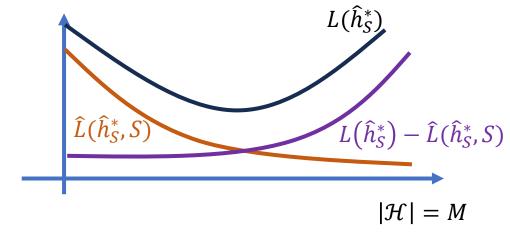
The more is not necessarily the better

Selection from a small  ${\mathcal H}$  — Selection from a large  ${\mathcal H}$ 

## Mid-summary

• 
$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{M}{\delta}}{2n}}\right) \leq \underbrace{M}_{\text{Selection}} \times \frac{\delta}{M}_{\text{Concentration}} = \delta$$

- For  $M \ll e^n$  we have L(h) under control
  - Concentration is stronger than selection
- Approximation-Estimation trade-off:
  - How to hit the "sweet spot"?
  - We have to pick  ${\mathcal H}$  before we start working with the data!
- Can we let the data speak for itself?



#### Outline

• Supervised learning – general background on generalization guarantees

Occam's razor – "the little brother of PAC-Bayes" [skipped]

PAC-Bayesian analysis (including distinctions with Bayesian learning)

Recursive PAC-Bayes – sequential prior updates

Weighted majority votes (if we reach it...)

# Occam's razor — "The little brother of PAC-Bayes"

- Occam's razor adaptive selection from countable  ${\cal H}$ 
  - A gentle introduction to "priors" in the frequentist framework.

- Check
  - Yevgeny Seldin. Machine Learning. The science of selection under uncertainty. https://arxiv.org/pdf/2509.21547, 2025.

$$\text{Hoeffding: } \mathbb{P}\left(\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right]-\frac{1}{n}\sum_{i=1}^{n}Z_{i} \geq \sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right) \leq \delta$$

### Occam's razor – Generalization bound for countable ${\cal H}$

• Theorem (Occam's razor): Let  $\pi(h)$  be nonnegative and

independent of 
$$S$$
 and satisfy  $\sum_{h \in \mathcal{H}} \pi(h) \leq 1$ . Then: 
$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h,S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \leq \delta.$$

The bound for a finite  $\mathcal{H}$  is a special case

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{M}{\delta}}{2n}}\right) \leq \delta$$

$$\pi(h) = \frac{1}{M}$$

• Proof:

$$\mathbb{P}\left(\exists h \in \mathcal{H} : L(h) \ge \hat{L}(h,S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right)$$

(Union bound)

(Hoeffding,  $\pi$  is independent of S!)  $(\sum_{h\in\mathcal{H}}\pi(h)\leq 1)$ 

$$\leq \sum_{h \in \mathcal{H}} \mathbb{P} \left( L(h) \geq \widehat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}} \right)$$
  
$$\leq \sum_{h \in \mathcal{H}} \pi(h) \delta$$

$$\leq \sum_{h\in\mathcal{H}} \pi(h) \delta$$

### Occam's razor selection

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \leq \delta$$

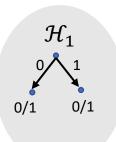
$$\mathbb{P}\left(\forall h \in \mathcal{H}: L(h) \leq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \geq 1 - \delta$$

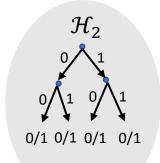
$$\hat{h}_{S}^{*} = \arg\min_{h} \underbrace{\frac{\hat{L}(h,S)}{Empirical}}_{Performance} + \underbrace{\sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}_{Complexity}}$$

With probability at least 
$$1 - \delta$$
:  $L(\hat{h}_S^*) \leq \hat{L}(\hat{h}_S^*, S) + \sqrt{\frac{\ln \frac{1}{\pi(\hat{h}_S^*)\delta}}{2n}}$ 

# Application example: binary decision trees







An alternative representation

•••

| $ \mathcal{H}_0  = 2$ | $ \mathcal{H} $ |
|-----------------------|-----------------|

$$|\mathcal{H}_1| = 4$$

$$|\mathcal{H}_2| = 16$$

$$|\mathcal{H}_d| = 2^{|\mathcal{X}_d|} = 2^{2^d}$$

|       | $\mathcal{X}_2$ |   | y |
|-------|-----------------|---|---|
|       | 0               | 0 | 0 |
| h     | 0               | 1 | 0 |
| $h_1$ | 1               | 0 | 0 |
|       | 1               | 1 | 0 |

|       | $\mathcal{X}_2$ |   | y |
|-------|-----------------|---|---|
|       | 0               | 0 | 1 |
| h     | 0               | 1 | 0 |
| $h_2$ | 1               | 0 | 0 |
|       | 1               | 1 | 0 |

:

|                       | $\mathcal{X}_2$ |   | y |
|-----------------------|-----------------|---|---|
|                       | 0               | 0 | 1 |
| h                     | 0               | 1 | 1 |
| $h_{ \mathcal{H}_2 }$ | 1               | 0 | 1 |
|                       | 1               | 1 | 1 |

$$\sum_{d=1}^{\infty} \frac{1}{2^d} = 1$$

# Application example: binary decision trees

$$\pi(\mathcal{H}_0) = \frac{1}{2}$$

$$\pi(\mathcal{H}_1) = \frac{1}{4}$$

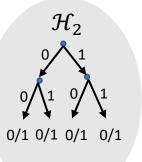
$$\mathcal{H}_1$$
0/1
0/1
0/1

$$\ell_1) = \frac{1}{4}$$

$$\mathcal{H}_1$$
0/1
0/1

$$\pi(\mathcal{H}_2) = \frac{1}{8}$$

$$\pi(\mathcal{H}_0) = \frac{1}{2}$$
  $\pi(\mathcal{H}_1) = \frac{1}{4}$   $\pi(\mathcal{H}_2) = \frac{1}{8}$   $\pi(\mathcal{H}_d) = \frac{1}{2^{d+1}}$ 



Occam: pick  $\pi(h)$ , such that  $\sum_{h\in\mathcal{H}}\pi(h)\leq 1$ . With probability at least  $1 - \delta$ , for all  $h \in \mathcal{H}$ 

$$L(h) \le \hat{L}(h,S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}$$

$$|\mathcal{H}_0| = 2$$

$$|\mathcal{H}_1| = 4$$

$$|\mathcal{H}_2| = 16$$

$$|\mathcal{H}_d| = 2^{2^d}$$

• 
$$\mathcal{H} = \bigcup_{d=0}^{\infty} \mathcal{H}_d$$

• 
$$d(h)$$
 - depth of tree  $h$ 

• 
$$\pi(h) = \pi (\mathcal{H}_{d(h)}) \frac{1}{|\mathcal{H}_{d(h)}|}$$
  
=  $\frac{1}{2^{d(h)+1}} \frac{1}{2^{2^{d(h)}}}$ 

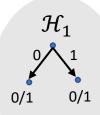
• 
$$\sum_{h\in\mathcal{H}} \pi(h) = \sum_{d=0}^{\infty} \sum_{h\in\mathcal{H}_d} \pi(h) = 1$$

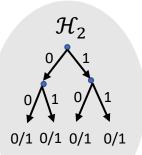
With probability at least  $1 - \delta$ , for all  $h \in \mathcal{H}$ :

$$L(h) \le \hat{L}(h,S) + \sqrt{\frac{(2^{d(h)} + d(h) + 1)\ln(2) + \ln\frac{1}{\delta}}{2n}}$$





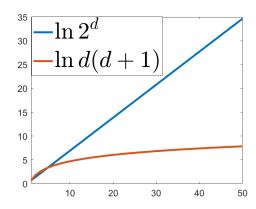




• 
$$\pi(h) = \pi(\mathcal{H}_{d(h)}) \frac{1}{|\mathcal{H}_{d(h)}|}$$

• 
$$\frac{1}{|\mathcal{H}_{d(h)}|}$$

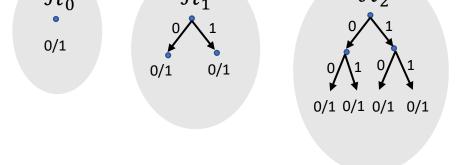
- Permutation-symmetric trees get the same prior
- In absence of prior knowledge, no reason to discriminate (structurally symmetric prior)
- If we had some prior knowledge, we could incorporate it into the prior
- $\pi(\mathcal{H}_d)$ 
  - Any series that sum up to 1 are acceptable
  - Alternative series:  $\sum_{d=1}^{\infty} \frac{1}{d(d+1)} = \sum_{d=1}^{\infty} \left(\frac{1}{d} \frac{1}{d+1}\right) = 1$
  - The bound with  $\pi(\mathcal{H}_d) = \frac{1}{2^{d+1}}$ :  $L(h) \le \hat{L}(h,S) + \sqrt{\frac{\left(2^{d(h)} + d(h) + 1\right)\ln(2) + \ln\frac{1}{\delta}}{2n}}$
  - The bound with  $\pi(\mathcal{H}_d) = \frac{1}{(d+1)(d+2)}$ :  $L(h) \leq \hat{L}(h,S) + \sqrt{\frac{2^{d(h)}\ln(2) + \ln\left((d(h)+1)(d(h)+2)\right) + \ln\frac{1}{\delta}}{2n}}$
  - Here  $|\mathcal{H}_d|=2^{2^d}$  is the dominant term, but elsewhere the choice of a series can make a big difference
  - $\sum_{d=1}^{\infty} \frac{1}{d(d+1)}$  is almost as close to uniform  $\frac{1}{d}$  as it may get:  $\ln d(d+1) \approx 2 \ln d$ . Uniform makes no prior assumptions



# Occam and estimation-approximation trade-off

- Occam's razor resolves the estimation-approximation trade-off
  - We do not need to select  $|\mathcal{H}|$  before learning starts, we select data-dependently

• This is achieved by h -dependent balancing of precision  $\sqrt{\frac{\ln\frac{1}{\pi(h)\delta}}{2n}}$  and confidence  $\pi(h)\delta$ 



$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \leq \delta$$

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \leq \delta$$

# The "prior" $\pi(h)$

- The "complexity"  $\pi(h)$  is defined for each h individually, before learning starts
- Large  $\pi(h)$  gives a small complexity term, but due to  $\sum_{h\in\mathcal{H}}\pi(h)\leq 1$  it cannot be large for too many h
- The bound is only meaningful for h with  $\pi(h) \gg e^{-n}$ 
  - So effectively we work with at most  $e^n$  prediction rules
- If  $\pi(h)$  is large for h with low  $\hat{L}(h,S)$ , we obtain a good bound
- But if  $\pi(h)$  is small for all h with low  $\hat{L}(h,S)$ , then the bound is loose
- Therefore, we do not want  $\pi(h)$  to be concentrated on too few h
- The bound may be good or bad, but it is always valid (unlike Bayesian approaches)
- $\pi(h)$  is an auxiliary construction in derivation of the bound
  - It can be used to encode prior knowledge, but it is not a "belief" in the Bayesian sense

# Mid-Summary

• Occam's razor: 
$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h,S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \leq \delta$$

- Automatically addresses the estimation-approximation trade-off
  - Adaptive data-dependent selection guided by  $\pi(h)$
- Example binary decision trees:

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \widehat{L}(h, S) + \sqrt{\frac{2^{d(h)}\ln(2) + \ln\left((d(h) + 1)(d(h) + 2)\right) + \ln\frac{1}{\delta}}{2n}}\right) \leq \delta$$

• Data-dependent selection of depth

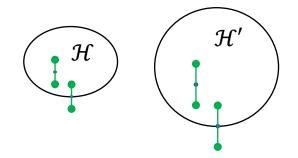
#### Outline

- Supervised learning general background on generalization guarantees
- Occam's razor "the little brother of PAC-Bayes" [skipped]
- PAC-Bayesian analysis (including distinctions with Bayesian learning)
- Recursive PAC-Bayes sequential prior updates
- Weighted majority votes (if we reach it...)

### From Occam to PAC-Bayes

- Occam can only handle countable selection
  - because it is based on a union bound
- PAC-Bayes handles uncountable selection
  - by using change-of-measure inequality instead of the union bound
- and provides refined measure of selection

# PAC-Bayesian Analysis



Selection → increases estimation error

- PAC-Bayesian analysis
  - Randomized classifiers → active avoidance of selection → reduces estimation error
  - The idea: instead of committing to a particular classifier, return a distribution over classifiers (avoid commitment)
  - For example: if two classifiers have the same empirical error, do not select among them, but return a 50/50 distribution
    - Stays at the same level of approximation error, but reduces the estimation error
  - Can be applied to uncountably infinite  ${\cal H}$

### Randomized Classifiers

- Let  $\rho$  be a distribution on  ${\mathcal H}$
- Randomized classification:
- 1. Sample  $h \sim \rho(h)$ 2. Observe X3. Return h(X)
- $\rho$  is a randomized classifier / Gibbs classifier
- Expected error:  $\mathbb{E}_{h \sim \rho(h)}[L(h)]$
- Empirical error:  $\mathbb{E}_{h\sim \rho(h)}[\hat{L}(h,S)]$

# Interpretation-friendly PAC-Bayes bound

• With probability at least  $1 - \delta$ , for all  $\rho$ :

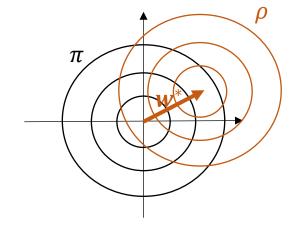
$$\mathbb{E}_{\rho}[L(h)] \leq \mathbb{E}_{\rho}[\hat{L}(h,S)] + \sqrt{\frac{2\mathbb{E}_{\rho}[\hat{L}(h,S)] \left( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \right)}{n}} + \frac{2\left( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \right)}{n}$$

- Pick ho that optimizes the trade-off between  $\mathbb{E}_{
  ho}igl[\hat{L}(h,S)igr]$  and  $\mathrm{KL}(
  ho||\pi)$ 
  - $\mathbb{E}_{\rho}[\widehat{L}(h,S)]$  assign high weight to h with small  $\widehat{L}(h,S)$
  - $KL(\rho||\pi)$  stay close to  $\pi$  in the KL sense
  - Extreme case: if  $\rho = \pi$ , then  $\mathrm{KL}(\rho||\pi) = 0$ . No selection, no penalty!
  - Fast rates: small  $\hat{L}(h,S)$  allows more aggressive deviation from  $\pi$

# Working with the bound

$$\mathbb{E}_{\rho}[L(h)] \leq \mathbb{E}_{\rho}[\hat{L}(h,S)] + \sqrt{\frac{2\mathbb{E}_{\rho}[\hat{L}(h,S)] \left( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \right)}{n}} + \frac{2\left( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \right)}{n}$$

- Select  $\pi$ . Example:  $\pi(h_w) = \mathcal{N}(0, I)$
- Select  $\rho$ . Example:  $\rho(h_w) = \mathcal{N}(w^*, I)$
- Calculate  $KL(\rho||\pi)$ . In the example:  $KL(\rho||\pi) = ||w^*||^2$
- Calculate  $\mathbb{E}_{\rho}\big[\widehat{L}(h,S)\big]$ 
  - The challenging part



## PAC-Bayes-kl inequality

- Binary kl divergence:  $p, q \in [0,1]$  biases of Bernoulli distribution
  - $kl(p||q) = KL((1-p,p)||(1-q,q)) = (1-p) \ln \frac{1-p}{1-q} + p \ln \frac{p}{q}$
- Theorem: For any "prior" distribution  $\pi$  on  $\mathcal H$  that is independent of S

$$\mathbb{P}\left(\exists \rho: \mathrm{kl}\left(\mathbb{E}_{\rho}\left[\widehat{L}(h, S)\right] || \mathbb{E}_{\rho}\left[L(h)\right]\right) \geq \frac{\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n}\right) \leq \delta$$

• The interpretation-friendly bound shown earlier follows from PAC-Bayes-kl by refined Pinsker's inequality: if  $\mathrm{kl}(p||q) \leq \varepsilon$ , then  $q \leq p + \sqrt{2p\varepsilon + 2\varepsilon}$ 

$$\bullet \ \mathbb{P} \left( \exists \rho \colon \mathbb{E}_{\rho}[L(h)] \geq \mathbb{E}_{\rho} \big[ \widehat{L}(h,S) \big] + \sqrt{\frac{2\mathbb{E}_{\rho}[\widehat{L}(h,S)] \Big( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \Big)}{n}} + \frac{2 \Big( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \Big)}{n} \right) \leq \delta$$

# Key tool for PAC-Bayes proofs: change of measure

- Donsker-Varadhan's variational formula:
  - $\ln \mathbb{E}_{X \sim \pi}[e^X] = \sup_{\rho \ll \pi} (\mathbb{E}_{X \sim \rho}[X] \mathrm{KL}(\rho||\pi))$
- Change of measure inequality:

```
For any f, \rho, and \pi: \mathbb{E}_{h \sim \rho}[f(h)] - \mathrm{KL}(\rho || \pi) \leq \ln \mathbb{E}_{h \sim \pi}[e^{f(h)}]
```

#### Markov:

$$\mathbb{P}\left(X \ge \frac{\mathbb{E}[X]}{\delta}\right) \le \delta$$

# PAC-Bayes Lemma

• PAC-Bayes Lemma: for  $\pi$  independent of S

• 
$$\mathbb{P}\left(\exists \rho : \mathbb{E}_{\rho}[f(h,S)] \ge \mathrm{KL}(\rho||\pi) + \ln \frac{\mathbb{E}_{\pi}\left[\mathbb{E}_{S}[e^{f(h,S)}]\right]}{\delta}\right) \le \delta$$

Proof

$$\mathbb{P}\left(\exists \rho : \mathbb{E}_{\rho}[f(h,S)] \geq \mathrm{KL}(\rho||\pi) + \ln \frac{\mathbb{E}_{\pi}\left[\mathbb{E}_{S}[e^{f(h,S)}]\right]}{\delta}\right)$$

$$= \mathbb{P}\left(\exists \rho : \mathbb{E}_{\rho}[f(h,S)] - \mathrm{KL}(\rho||\pi) \geq \ln \frac{\mathbb{E}_{S}\left[\mathbb{E}_{\pi}[e^{f(h,S)}]\right]}{\delta}\right) \qquad \text{(independence of } \pi \text{ and } S\text{)}$$

$$\leq \mathbb{P}\left(\mathbb{E}_{\pi}\left[e^{f(h,S)}\right] \geq \frac{\mathbb{E}_{S}\left[\mathbb{E}_{\pi}\left[e^{f(h,S)}\right]\right]}{\delta}\right) \qquad \text{(change of measure)}$$

$$\leq \delta \qquad \qquad \text{(Markov's inequality)}$$

- Change of measure deterministically relates  $\mathbb{E}_{\rho}[f(h,S)] \mathrm{KL}(\rho||\pi)$  for all  $\rho$  to a single quantity  $\ln \mathbb{E}_{\pi}[e^{f(h,S)}]$ . Probabilistic argument is applied only to  $\mathbb{E}_{\pi}[e^{f(h,S)}]$ .
- Change of measure serves as a continuous replacement to the union bound.

# Proof of PAC-Bayes-kl

PAC-Bayes-kl: 
$$\mathbb{P}\left(\exists \rho: \mathrm{kl}\left(\mathbb{E}_{\rho}\left[\hat{L}(h, S)\right] || \mathbb{E}_{\rho}[L(h)]\right) \geq \frac{\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n}\right) \leq \delta$$

PAC-Bayes Lemma:

$$\mathbb{P}\left(\exists \rho : \mathbb{E}_{\rho}[f(h,S)] \geq \mathrm{KL}(\rho||\pi) + \ln \frac{\mathbb{E}_{\pi}\left[\mathbb{E}_{S}[e^{f(h,S)}]\right]}{\delta}\right) \leq \delta$$

• Take 
$$f(h,S) = n \operatorname{kl} (\widehat{L}(h,S) || L(h))$$

• kl-Lemma: 
$$\mathbb{E}_{S}\left[e^{n\mathrm{kl}\left(\hat{L}(h,S)||L(h)\right)}\right] \leq 2\sqrt{n}$$

Proof of PAC-Bayes-kl:

# Modularity of PAC-Bayes

PAC-Bayes Lemma: 
$$\mathbb{P}\left(\exists \rho : \mathbb{E}_{\rho}[f(h,S)] \geq \mathrm{KL}(\rho||\pi) + \ln \frac{\mathbb{E}_{\pi}\left[\mathbb{E}_{S}\left[e^{f(h,S)}\right]\right]}{\delta}\right) \leq \delta$$

- Different choices of f(h,S) give divergence measures between  $\mathbb{E}_{\rho}\big[\widehat{L}(h,S)\big]$  and  $\mathbb{E}_{\rho}[L(h)]$ 
  - PAC-Bayes-kl:  $f(h,S) = nkl(\hat{L}(h,S)||L(h))$ 
    - kl-Lemma:  $\mathbb{E}_{S}\left[e^{n\mathrm{kl}\left(\hat{L}(h,S)||L(h)\right)}\right] \leq 2\sqrt{n}$
  - PAC-Bayes-Hoeffding:  $f(h,S) = n\lambda \left(L(h) \hat{L}(h,S)\right)$ 
    - Hoeffding's Lemma:  $\mathbb{E}_{S}\left[e^{n\lambda\left(L(h)-\hat{L}(h,S)\right)}\right] \leq e^{\frac{n\lambda^{2}}{8}}$
  - PAC-Bayes-Bernstein, PAC-Bayes-Bennett, PAC-Bayes-Unexpected-Bernstein, ...
- Different choices of  $\rho$  and  $\pi$  give different regularizations.
  - Gaussian prior and posterior  $\rightarrow$  regularization by  $||w||^2 = \sum_{i=1}^d w_i^2$
  - Laplacian prior and posterior  $\rightarrow$  regularization by  $||w||_1 = \sum_{i=1}^{l} |w_i|$

### Minimization of the bound

Relaxation: PAC-Bayes-λ (based on refined Pinsker's inequality)

$$\mathbb{E}_{\rho}[L(h)] \leq \frac{\mathbb{E}_{\rho}[\hat{L}(h,S)]}{1 - \frac{\lambda}{2}} + \frac{\mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta}}{n\lambda \left(1 - \frac{\lambda}{2}\right)}$$

- For a fixed  $\rho$  convex in  $\lambda$ , for a fixed  $\lambda$  convex in  $\rho$

• Apply alternating minimization 
$$\bullet \ \rho_{\lambda}^*(h) = \frac{\pi(h)e^{-n\lambda\widehat{L}(h,S)}}{\mathbb{E}_{\pi}[e^{-n\lambda\widehat{L}(h,S)}]}$$
 (Gibbs distribution)

• Holds for any  ${\mathcal H}$  , but computationally tractable only for finite  ${\mathcal H}$ 

• 
$$\lambda_{\rho}^* = \frac{2}{\sqrt{\frac{2n\mathbb{E}_{\rho}[\widehat{L}(h,S)]}{\mathrm{KL}(\rho||\pi)} + 1 + 1}} \in (0,1]$$

- The bound is *not* jointly convex in  $\rho$  and  $\lambda$ 
  - Convergence to a local minimum, but in many practical cases still global

$$\mathbb{P}\left(\exists \rho: \mathrm{kl}\left(\mathbb{E}_{\rho}\left[\hat{L}(h, S)\right] || \mathbb{E}_{\rho}\left[L(h)\right]\right) \geq \frac{\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n}\right) \leq \delta$$

# PAC-Bayes vs. Bayesian learning

- PAC-Bayesian bounds
  - $\pi(h)$  is an auxiliary construction in the proof; the bounds always hold
  - High-probability guarantee on the distance between  $\mathbb{E}_{\rho}[\widehat{L}(h,S)]$  and  $\mathbb{E}_{\rho}[L(h)]$
  - The loss function  $\ell(h(X), Y)$  is a central element and impacts the bound minimizer  $\rho^*$
  - Holds for all  $\rho(h)$
  - Typically assumes  $\ell(h(X),Y) \in [0,1]$ . Otherwise requires smoothing of  $\rho$  or assumptions ensuring concentration of  $\hat{L}(h,S)$  around L(h)
  - $\rho^*(h) \propto \pi(h)e^{-n\lambda \hat{L}(h,S)}$  and typically  $\lambda < 1$
  - If  $\ell$  is not the negative log likelihood, then the shape of  $\rho^*(h)$  may be altogether different
  - A bound on  $KL(\rho||\pi)$  is sufficient, no need in explicit  $\pi(h)$ . E.g., distribution-dependent  $\pi$ .

- Bayesian learning
  - $\pi(h)$  is a prior "belief".
  - The Bayes rule provides a way to update prior "belief" to a posterior "belief" given evidence (data S)

$$\rho(h|S) = \frac{\pi(h)\mathbb{P}(S|h)}{\mathbb{P}(S)}$$

- The loss function is not part of the basic formulation
- The posterior is a conditional distribution  $\rho(h|S)$
- Not directly concerned with concentration, so unboundedness of  $\ell$  is not an issue
- If  $\ell$  is negative log-likelihood, then  $\mathbb{P}(S|h) = e^{-n\hat{L}(h,S)}$  and  $\rho(h|S) \propto \pi(h)e^{-n\hat{L}(h,S)}$
- Requires explicit  $\pi(h)$  to update  $\rho(h|S)$

# Mid-summary

• PAC-Bayes-kl bound: with probability at least  $1-\delta$ , for all  $\rho$ 

$$\mathrm{kl}\big(\mathbb{E}_{\rho}\big[\hat{L}(h,S)\big]||\mathbb{E}_{\rho}[L(h)]\big) \leq \frac{\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n}$$

• Interpretation-friendly relaxation

$$\mathbb{E}_{\rho}[L(h)] \leq \mathbb{E}_{\rho}[\hat{L}(h,S)] + \sqrt{\frac{2\mathbb{E}_{\rho}[\hat{L}(h,S)] \left( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \right)}{n}} + \frac{2\left( \mathrm{KL}(\rho||\pi) + \ln \frac{2\sqrt{n}}{\delta} \right)}{n}$$

Optimization-friendly relaxation

$$\mathbb{E}_{\rho}[L(h)] \leq \frac{\mathbb{E}_{\rho}[\hat{L}(h,S)]}{1 - \frac{\lambda}{2}} + \frac{\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n\lambda\left(1 - \frac{\lambda}{2}\right)}$$

### Outline

- Supervised learning general background on generalization guarantees
- Occam's razor "the little brother of PAC-Bayes" [skipped]
- PAC-Bayesian analysis (including distinctions with Bayesian learning)
- Recursive PAC-Bayes sequential prior updates
- Weighted majority votes (if we reach it...)

### Data-Informed Priors

• 
$$\mathbb{P}\left(\exists \rho: \mathrm{kl}\left(\mathbb{E}_{\rho}\left[\hat{L}(h, S)\right] || \mathbb{E}_{\rho}\left[L(h)\right]\right) \geq \frac{\mathrm{KL}(\rho||\boldsymbol{\pi}) + \ln\frac{2\sqrt{n}}{\delta}}{n}\right) \leq \delta$$

- Idea: use part of the data to construct (data-informed)  $\pi$  and the rest of the data to compute the bound
- Advantage: "good"  $\pi$
- Disadvantage: the denominator of the bound decreases from n to m
- Challenge: the confidence information on the prior is lost
  - How much data were used to construct the prior?
  - Was it constructed in a single step or multiple steps?
  - Multi-step processing is not very helpful

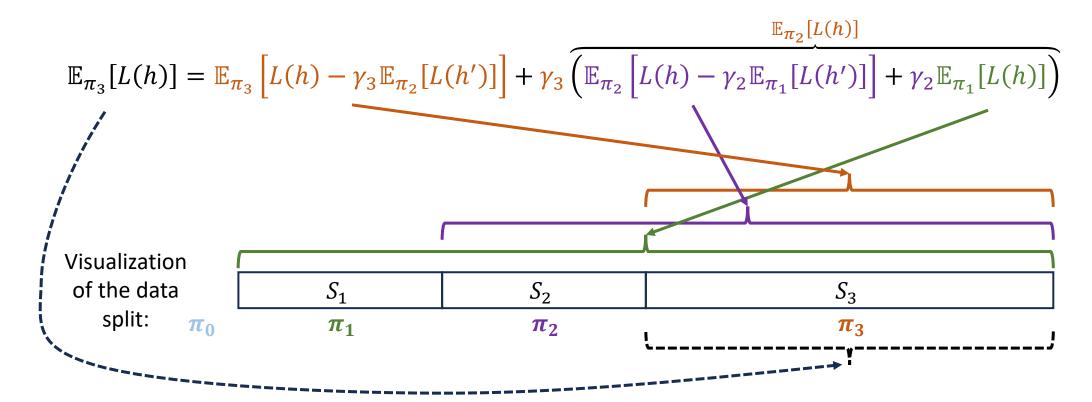
## Recursive PAC-Bayes

Recursive loss decomposition

$$\mathbb{E}_{\pi_t}[L(h)] = \mathbb{E}_{\pi_t} \left[ L(h) - \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')] \right] + \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]$$
Excess loss (small variance)
Decompose recursively

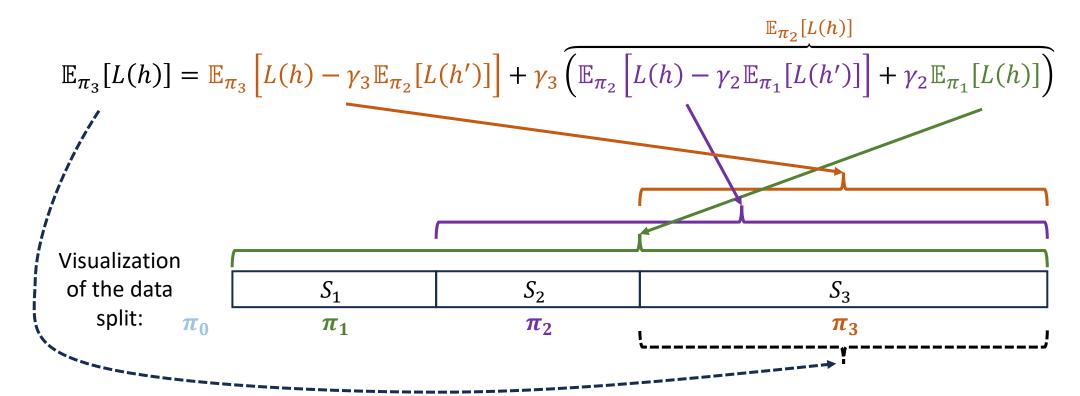
$$\mathbb{E}_{\pi_t}[L(h)] = \mathbb{E}_{\pi_t} \left[ L(h) - \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')] \right] + \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]$$

## Illustration: 3-terms Recursive Decomposition



$$\mathbb{E}_{\pi_t}[L(h)] = \mathbb{E}_{\pi_t}\left[L(h) - \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]\right] + \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]$$

# Illustration: 3-terms Recursive Decomposition

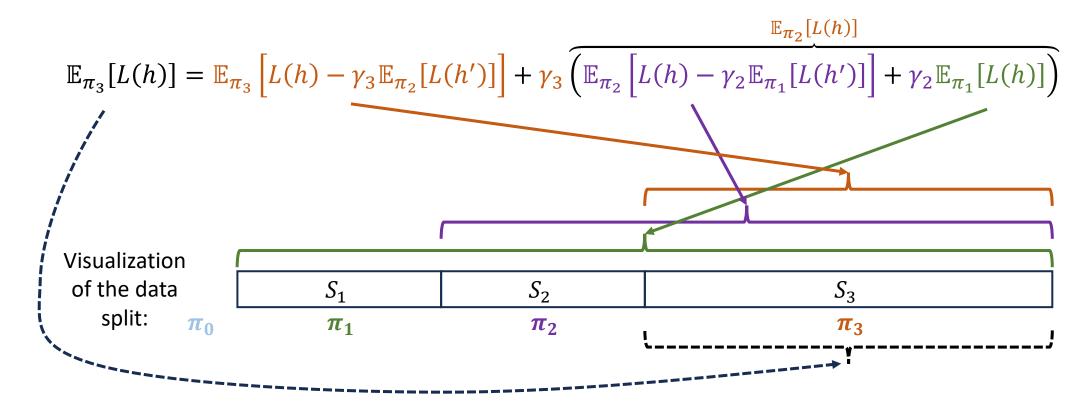


- Early steps:
  - Poor  $\pi_{t-1} \Rightarrow \text{large KL}(\pi_t || \pi_{t-1})$
  - Large denominator
  - Small  $\gamma_t \cdot ... \cdot \gamma_T$

- Late steps:
  - Good  $\pi_{t-1} \Rightarrow \text{small } \text{KL}(\pi_t || \pi_{t-1})$
  - Benefit from small variance of the excess loss

$$\mathbb{E}_{\pi_t}[L(h)] = \mathbb{E}_{\pi_t}\left[L(h) - \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]\right] + \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]$$

## Illustration: 3-terms Recursive Decomposition



- A good way to split the data geometric split ( $|S_t| = 2|S_{t-1}|$ )
  - Use little data to bring  $\pi_t$  to a "good region"
  - Leave sufficient data to bound the last term  $\left(|S_T| = \frac{1}{2}|S|\right)$

# Empirical evaluation

|             | MNIST       |             |             | Fashion MNIST |             |             |
|-------------|-------------|-------------|-------------|---------------|-------------|-------------|
|             | Train 0-1   | Test 0-1    | Bound       | Train 0-1     | Test 0-1    | Bound       |
| Uninf.      | .343 (2e-3) | .335 (3e-3) | .457 (2e-3) | .382 (2e-3)   | .384 (2e-3) | .464 (2e-3) |
| Inf.        | .377 (8e-4) | .371 (6e-3) | .408 (9e-4) | .412 (1e-3)   | .413 (6e-3) | .440 (1e-3) |
| Inf. + Ex.  | .157 (2e-3) | .151 (3e-3) | .192 (2e-3) | .280 (4e-3)   | .285 (5e-3) | .342 (6e-3) |
| RPB $T=2$   | .143 (2e-3) | .139 (3e-3) | .321 (3e-3) | .257 (3e-3)   | .266 (5e-3) | .404 (3e-3) |
| RPB $T=4$   | .112 (1e-3) | .109 (1e-3) | .203 (8e-4) | .203 (2e-3)   | .213 (3e-3) | .293 (1e-3) |
| RPB $T=6$   | .103 (1e-3) | .101 (1e-3) | .166 (1e-3) | .186 (4e-4)   | .198 (1e-3) | .255 (1e-3) |
| RPB $T = 8$ | .101 (1e-3) | .097 (2e-3) | .158 (2e-3) | .181 (1e-3)   | .192 (3e-3) | .242 (1e-3) |

- Uninformed  $\pi$
- Informed  $\pi$  using half of the data
- Informed  $\pi$  with excess loss
  - Mhammedi et al. (2019)
  - $\mathbb{E}_{\rho}[L(h)] = \mathbb{E}_{\rho}[L(h) L(h^*)] + L(h^*)$
  - $\pi$  and  $h^*$  trained on half of the data
- Recursive PAC-Bayes (RPB) with  $S = S_1, ..., S_T$

# The computational side

- For models with linear training time the overhead is small
  - Each data point is used in training just one model
- For models with superlinear training time training a sequence of small models may be cheaper than training one big model

• If finding  $\pi_t^*$  involves an approximation, it may be possible to trade-off computation and accuracy

# Mid-summary

Recursive loss decomposition

$$\mathbb{E}_{\pi_t}[L(h)] = \mathbb{E}_{\pi_t} \left[ L(h) - \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')] \right] + \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]$$
Excess loss (small variance)
Decompose recursively

- No loss of confidence information in the prior; efficient use of the data
- Geometric splits little data brings  $\pi_t$  to a good region

### Outline

- Supervised learning general background on generalization guarantees
- Occam's razor "the little brother of PAC-Bayes" [skipped]
- PAC-Bayesian analysis (including distinctions with Bayesian learning)
- Recursive PAC-Bayes sequential prior updates
- Weighted majority votes (if we reach it...)

# Weighted Majority Vote

- Fundamental technique for combining predictions of multiple classifiers
- Used in Random Forests, Boosting, and other techniques
- Can be applied with heterogeneous classifiers
- Wins most ML competitions
- Can be used for derandomization of PAC-Bayes

Key power - Cancellation of errors effect

• If the errors are independent, they average out

#### Main theoretical questions

- Generalization bounds
- Optimization of weights

# Weighted Majority Vote – Formal Definition

- Let  $\rho$  be a distribution on  ${\mathcal H}$
- In the binary case  $(\mathcal{Y} = \{\pm 1\})$ 
  - $MV_{\rho}(X) = sign(\sum_{h} h(X)\rho(h))$
  - The label getting the higher weight
  - Ties resolved arbitrarily
- In the multiclass case (finite  $\mathcal{Y}$ )
  - $MV_{\rho}(X) = \arg\max_{y} \sum_{h:h(X)=y} \rho(h) = \arg\max_{y} \mathbb{E}_{h\sim\rho}[\mathbb{I}(h(X)=y)]$
  - The label getting the maximal weight
  - Ties resolved arbitrarily

### Bounding $L(MV_{\rho})$

- Basic observation:
  - If majority vote erred, then at least a  $\rho$ -weighted half of the classifiers erred

• 
$$\ell(MV_{\rho}(X), Y) \le \mathbb{I}\left(\mathbb{E}_{h \sim \rho}[\mathbb{I}(h(X) \neq Y)] \ge 0.5\right)$$
 $\rho$ -weighted mass of errors

· Basic bound:

• 
$$\underline{L(MV_{\rho})}_{expected\ loss\ of} = \mathbb{E}_{(X,Y)\sim D} [\ell(MV_{\rho}(X),Y)]$$

$$= \mathbb{E}_{(X,Y)\sim D} [\mathbb{I}(\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X)\neq Y)] \geq 0.5)]$$

$$= \mathbb{P}_{(X,Y)\sim D} [\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X)\neq Y)] \geq 0.5)$$

$$= \mathbb{P}_{(X,Y)\sim D} [\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X)\neq Y)] \geq 0.5)$$

$$= \mathbb{P}_{(X,Y)\sim D} [\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X)\neq Y)] \geq 0.5)$$

# First order oracle bound ("folk theorem")

Theorem: First order oracle bound

$$L(MV_{\rho}) \leq 2 \underbrace{\mathbb{E}_{h \sim \rho}[L(h)]}_{\substack{expected \ loss \ of \\ \rho-weighted \\ randomized \ classifier}}$$

- Proof:
  - The basic bound:  $L(MV_{\rho}) \leq \mathbb{P}_{(X,Y) \sim D}(\mathbb{E}_{h \sim \rho}[\mathbb{I}(h(X) \neq Y)] \geq 0.5)$
  - Take  $Z = \underbrace{\mathbb{E}_{h \sim \rho} \big[ \mathbb{I}(h(X) \neq Y) \big]}_{\rho\text{-weighted mass of errors on } (X,Y)}$
  - $L(MV_{\rho}) \leq \mathbb{P}(Z \geq 0.5) \lesssim 2\mathbb{E}_{(X,Y)\sim D}[Z]$   $= 2\mathbb{E}_{(X,Y)\sim D}\left[\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X) \neq Y)]\right] = 2\mathbb{E}_{h\sim \rho}\left[\mathbb{E}_{(X,Y)\sim D}[\mathbb{I}(h(X) \neq Y)]\right] = 2\mathbb{E}_{h\sim \rho}[L(h)]$

# First order empirical bound

$$\underbrace{L(MV_{\rho}) \leq 2\mathbb{E}_{h \sim \rho}[L(h)]}_{L(h)}$$

First order oracle bound

$$\leq 2 \left( \underbrace{\frac{\mathbb{E}_{h \sim \rho}[\hat{L}(h,S)]}{1 - \frac{\lambda}{2}} + \frac{\mathrm{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{n\lambda \left(1 - \frac{\lambda}{2}\right)}}_{\text{PAC-Bayesian bound on } \mathbb{E}_{h \sim \rho}[L(h)] \right)$$

- Advantages:
  - Reasonably tight
- Disadvantages:
  - The oracle bound ignores correlations of errors (the main power of MV)
  - Optimization of the empirical bound leads to deterioration of the test error

### Second order oracle bound

- Define tandem loss for pairs of classifiers h, h'
  - $\ell(h(X), h'(X), Y) = \underbrace{\mathbb{I}(h(X) \neq Y) * \mathbb{I}(h'(X) \neq Y)}_{\text{total and least the set of the set o$
  - Counts an error if both h and h' err on (X,Y)
- Expected tandem loss:
  - $L(h,h') = \mathbb{E}_{(X,Y)\sim D}[\ell(h(X),h'(X),Y)]$
- Empirical tandem loss:
  - $\hat{L}(h, h', S) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), h'(X_i), Y_i)$

Theorem: Second order oracle bound

$$L(MV_{\rho}) \leq 4 \mathbb{E}_{(h,h')\sim \rho^2} \left[ \underbrace{L(h,h')}_{expected} \right]$$

- Proof:
  - Second order Markov's inequality:  $\mathbb{P}(Z \ge \varepsilon) \le \mathbb{P}(Z^2 \ge \varepsilon^2) \le \mathbb{E}[Z^2]/\varepsilon^2$
  - As before, take  $Z = \mathbb{E}_{h \sim \rho}[\mathbb{I}(h(X) \neq Y)]$

• 
$$\underbrace{L\big(\mathsf{MV}_{\rho}\big) \leq \mathbb{P}(Z \geq 0.5)}_{\text{The basic bound}}$$

$$\leq 4\mathbb{E}_{(X,Y)\sim D}[Z^2]$$

$$= 4\mathbb{E}_{(X,Y)\sim D}\big[\big(\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X)\neq Y)]\big)^2\big]$$

$$= 4\mathbb{E}_{(X,Y)\sim D}\big[\mathbb{E}_{(h,h')\sim \rho^2}\big[\underbrace{\mathbb{I}(h(X)\neq Y)*\mathbb{I}(h'(X)\neq Y)}_{tandem\ loss}\big]$$

$$= 4\mathbb{E}_{(h,h')\sim \rho^2}\big[\mathbb{E}_{(X,Y)\sim D}\big[\underbrace{\mathbb{I}(h(X)\neq Y)*\mathbb{I}(h'(X)\neq Y)}_{tandem\ loss}\big]$$

$$= 4\mathbb{E}_{(h,h')\sim \rho^2}\big[L(h,h')\big]$$

# Second order empirical bound

$$L(MV_{\rho}) \leq 4\mathbb{E}_{(h,h')\sim\rho^{2}}[L(h,h')]$$

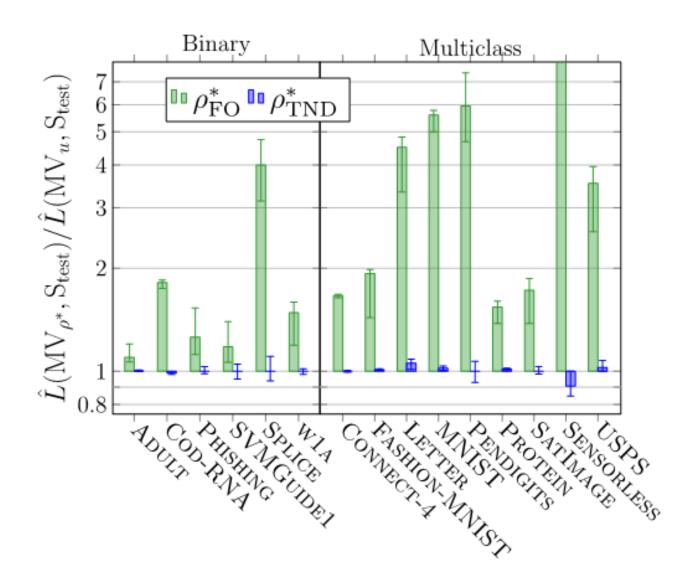
$$\leq 4\left(\frac{\mathbb{E}_{(h,h')\sim\rho^{2}}[\hat{L}(h,h',S)]}{1-\frac{\lambda}{2}} + \frac{\mathrm{KL}(\rho^{2}\|\pi^{2}) + \ln\frac{2\sqrt{n}}{\delta}}{n\lambda(1-\frac{\lambda}{2})}\right)$$

$$= 4\left(\frac{\mathbb{E}_{(h,h')\sim\rho^{2}}[\hat{L}(h,h',S)]}{1-\frac{\lambda}{2}} + \frac{2\mathrm{KL}(\rho\|\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n\lambda(1-\frac{\lambda}{2})}\right)$$

- Advantages:
  - Takes correlation of errors into account
  - Minimization does not deteriorate the test error
- Disadvantages:
  - The tandem loss is harder to estimate (both computationally and statistically), therefore the bound is often weaker than the first order bound
    - But it is still a better bound to optimize, because it does not deteriorate the test error

# Empirical evaluation

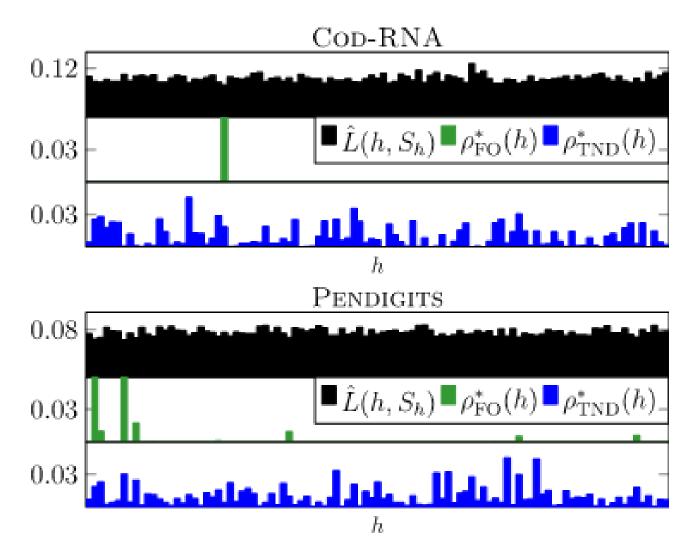
Test error of optimized majority vote over uniformly weighted majority vote baseline for the first order [FO] and the second order [TND] bound (the lower the better)



# Empirical evaluation

The optimized weights  $\rho^*$  generated by the first order [FO] and the second order [TND] bound.

The result can be used for pruning the majority vote.



# Mid-summary

- The basic bound:
  - $L(MV_{\rho}) \le \mathbb{P}_{(X,Y)\sim D}(\mathbb{E}_{h\sim \rho}[\mathbb{I}(h(X) \ne Y)] \ge 0.5)$
- First order bound

• 
$$L(MV_{\rho}) \le 2\mathbb{E}_{h \sim \rho}[L(h)] \le 2\left(\underbrace{\frac{\mathbb{E}_{h \sim \rho}[\hat{L}(h,S)]}{1-\frac{\lambda}{2}} + \frac{\mathrm{KL}(\rho \| \pi) + \ln \frac{2\sqrt{n}}{\delta}}{n\lambda(1-\frac{\lambda}{2})}}_{\text{PAC-Bayesian bound on } \mathbb{E}_{h \sim \rho}[L(h)]}\right)$$

- Ignores correlations of errors
- · Minimization degrades the test error
- Second order bound

• 
$$\underbrace{L\left(\mathsf{MV}_{\rho}\right) \leq 4\mathbb{E}_{\left(h,h'\right) \sim \rho^{2}}\left[L(h,h')\right]}_{\mathsf{Second order oracle bound}} \leq 4\left(\frac{\mathbb{E}_{\left(h,h'\right) \sim \rho^{2}}\left[\hat{L}(h,h',S)\right]}{1-\frac{\lambda}{2}} + \frac{2\mathsf{KL}(\rho\|\pi) + \ln\frac{2\sqrt{n}}{\delta}}{n\lambda\left(1-\frac{\lambda}{2}\right)}\right)$$

- Takes correlations of errors into account
- Does not deteriorate the test error
- May be weaker than the first order bound

#### • Follow-ups:

- Bounds based on Chebyshev-Cantelli instead of second order Markov
  - Wu et al., NeurIPS, 2021
- Chebyshev-Cantelli + PAC-Bayes-split-kl
  - Wu and Seldin, NeurIPS, 2022

## Summary

Occam's razor (with fast rate!) – "the little brother"

$$\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \ge \hat{L}(h, S) + \sqrt{\frac{2\hat{L}(h, S) \ln \frac{1}{\pi(h)\delta}}{n}} + \frac{2\ln \frac{1}{\pi(h)\delta}}{n}\right) \le \delta$$

- Flexible definition of complexity prior knowledge  $\pi(h)$
- PAC-Bayes

$$\mathbb{P}\left(\exists \rho \colon \mathbb{E}_{\rho}[L(h)] \geq \mathbb{E}_{\rho}\left[\hat{L}(h,S)\right] + \sqrt{\frac{2\mathbb{E}_{\rho}\left[\hat{L}(h,S)\right]\left(\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}\right)}{n}} + \frac{2\left(\mathrm{KL}(\rho||\pi) + \ln\frac{2\sqrt{n}}{\delta}\right)}{n}\right) \leq \delta$$

- Refined measure of selection  $KL(\rho||\pi)$ . No selection no penalty!
- Recursive PAC-Bayes

$$\mathbb{E}_{\pi_t}[L(h)] = \mathbb{E}_{\pi_t}\left[L(h) - \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]\right] + \gamma_t \mathbb{E}_{\pi_{t-1}}[L(h')]$$

- Sequential prior updates with no loss of confidence information
- Weighted majority votes

$$L(MV_{\rho}) \le 2\mathbb{E}_{h \sim \rho}[L(h)]$$
  
$$L(MV_{\rho}) \le 4\mathbb{E}_{(h,h') \sim \rho^{2}}[L(h,h')]$$

• Open question: recursive bounds for the weighted majority votes?

# Further reading

 Yevgeny Seldin. Machine Learning. The science of selection under uncertainty. <a href="https://arxiv.org/pdf/2509.21547">https://arxiv.org/pdf/2509.21547</a>, 2025.