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Outline

* Supervised learning — general background on generalization guarantees
 Occam’s razor — “the little brother of PAC-Bayes” [skipped]

e PAC-Bayesian analysis (including distinctions with Bayesian learning)

* Recursive PAC-Bayes — sequential prior updates

* Weighted majority votes (if we reach it...)
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Supervised Learning

* Notations

« X —sample space (e.g., X = R%)
Y - label space (e.g., Classification: Y = {£1}; Regression: Y = R)
S ={X, Y1), ..., (X, Y,)}—training sample (where X; € X, Y; € Y)
h: X — Y —a prediction rule / hypothesis
H - a set of prediction rules / a hypothesis set
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Evaluation

* £(y',y) —loss/error/risk function * The loss function determines
Loss for predicting y’ when the reality ~ the cost of different mistakes!!!

>y Depends
] on the
. les: e Example: Fire alarm  house

Examples: /

e Zero-one loss | Y v 1o fire ﬁre/

ty,y) =1y #y) = 0, l.fy =Y no fire 0 5.000.000

Lo iy #y fire 2.000 0
| .
A

* Squared loss - 7—
£(y',y) = (y' —y)? constant
* Absolute loss
f(y"y) = |y, _Y|



The quantity of interest — Expected Loss

Expected loss/error/risk
* L(h) — IIE':(X,Y)~p(x,y) [f(h(X); Y)]

Temperature

* Assumption
* (X,Y) are sampled from a fixed (unknown) distribution p(X,Y)

Pulse

Challenge: p(X,Y) is unknown, and so is L(h)

What can we say about L(h)?
* Use empirical loss L(h, S) = %Z’i‘zl ?(h(X;),Y;) as an estimate

Key question: how close is L(h, S) to L(h)?
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* Assumptions
* {(X1,Y1), ..., X}, Y,)} are independent identically distributed (i.i.d.)
* And come from the same distribution as new samples (X,Y)

 L(h, S,4;) is an unbiased estimate of L(h)

- 1 1
+ E[L(h,S,a)] = E|= T 2(h(X), V)| = = S E[£(h(X), )] = L()
* From the perspective of h the samples in S,,; are indistinguishable from new samples (X,Y)



What can be said about L(h) based on L(h, S,4;)?

*L(h,S,4;) is an unbiased estimate of L(h)

e But consider m = 1 and the zero-one loss:
» L(s,,) € {01} — never close to L(h)!

 Being unbiased is neither sufficient, nor necessary

* We need concentration!



Formalization
* Zi — 'g(h(Xl)l Yl)

e If (X1, Y1), ..., (X,,,Y;,) are independent identically distributed (i.i.d.), then
Zq, .., Zy arealsoi.i.d.

* L(h) = E[¢(h(X),Y)] = E[Z,] = u

~ 1 1 A
* L(h, Sval) — ;Z?=1€(h(xi)» Yl) — " ?=1Zi — Un

* How far can fi,, be from u?



Frequentist vs. Bayesian paradigms

* Bayesian paradigm
» Parameters of data-generating process are sampled from an unknown distribution

* Bayesian learning starts with a prior distribution m(8) on the parameters and, given evidence S, applies the
Bayes rule

T(6)P(S|6)

* pO1S) ===

The probabilities are over observations and parameters (both are random variables)

The loss function is not part of the basic framework!

* Frequentist paradigm
* The parameters are unknown, but fixed
* Frequentists bound the probability that some [loss] function of the observations fi,, = %Z{;l ?(h(X;),Y;)
deviates significantly from its expectation L(h) = u = E[,,]
* The random variable is fi,;, but not u; and the probability is over fi,,, but not u



Frequentist vs. Bayesian paradigms

PAC-Bayesian analysis takes the frequentist path

PAC = Probably Approximately Correct

* Frequentist paradigm
* The parameters are unknown, but fixed
* Frequentists bound the probability that some [loss] function of the observations [i,, = %Z?ﬂ 2(h(X;),Y:)
deviates significantly from its expectation L(h) = u = E[{i,]
* The random variable is fi,;, but not u; and the probability is over fi,,, but not u




Concentration of measure — Hoeffding's inequality

 Theorem (Hoeffding’s inequality):
Let Z4, ..., Z, bei.i.d., Z; € [0,1], then for any € > O:

n
1
— —z Z; = e) < e
n .
=1

_ 1 l
Equivalently, for any § € (0,1]: ]P’(IE % ?=1Zi] > %Z?zlzi + /%) )

* Corollary: Assume that ¢ is bounded in the [0,1] interval. Assume that we have a single prediction
rule h that is independent of S. Then forany § € (0,1]:

1
11’13

> ], 9 <
P\ L(h) = L(h,S) + o <0

B n
1
PlE|- ) Z
n.
=1

. In=
Equivalently, with probability at least 1 — 8: L(h) < L(h, S) + /2115

The probability is over L(h, S), but not L(h)!!!



Learning by Selection

S = {(X1; Yl)i ) (Xn' Yn)} (X’ Y)

!

3 1%
L(h,$) == > 60 (X, YD)
=1

R 1%
L(he,§) = ) 2(h(X), %) R
i=1 v

—  hi=arg {lrélj{[l L(h,S) L(ﬁ}) = IE[{’(EE(X), Y)]

—

3 1%
L(hs,$) = = > (ks (XD, 1)
i=1

Es|L(hs, )] # Es[L(hs)]

— Hoeffding does not apply to L(fl}) — L(hs, S)!



Hoeffding: IP (IE [%Z?:l Zi] _% nZ; > s) < g—2né’

Selection from finite H (|H| = M)

L(R5) # Es[L(F3, 5)]
We cannot appAIy Hoeffding!
P(L(hs) = L(hs,S) +¢€)

We break the dependence

<P(3heH: L(h) =L(hS) +¢)

(Union bound) < Y P(L(R) = L(h,S) +¢)
(Hoeffding) < Dher g—2ne’
= M x e2ne

SV . N e’ .
Selection Concentration

— S = {(Xl,yl):---:(anYn)}

|

M n
In— i 1
. . (hy,S) == ) (i (X),Y)
Solving for € gives € = ,—Zr‘f )
L(hy,S) = %i 2(hy (X)), 1)

/ M
Theorem: P (L(ﬁ;) > E(ﬁg, S) + 1:—;3) <4 “> Z(h3,5)=1—112f(h3(xi),m

—

S— hg = arghmsg[lL(h,S)




Approximation-Estimation (bias-variance) trade-off

Error
In= Estimation error L(h) — L(h")
- M
In—
2n canbeupto2 |[—2
2n
Estimation
error
(variance)
The more is
Approximation not necessarily
error the better

(ST R 2 ———— o L(f*) e

Selection from a small H  Selection from a large H



Mid-summary

M
~ In—
cP3ned: L) 2L+ |2 |< M X % g
N—v—a Selection ConcerT‘Jcration
€ o—2ne?

L(hs)

* For M < e™ we have L(h) under control
e Concentration is stronger than selection

L(hs, S L(hy) — L(R% S)

* Approximation-Estimation trade-off: >
* How to hit the “sweet spot”? ¥ =M
* We have to pick H before we start working with the data!

* Can we let the data speak for itself?



Outline

* Supervised learning — general background on generalization guarantees
* Occam’s razor — “the little brother of PAC-Bayes” [skipped]

e PAC-Bayesian analysis (including distinctions with Bayesian learning)

* Recursive PAC-Bayes — sequential prior updates

* Weighted majority votes (if we reach it...)



Occam’s razor — “The little brother of PAC-Bayes”

* Occam’s razor — adaptive selection from countable H
* A gentle introduction to “priors” in the frequentist framework.

* Check

* Yevgeny Seldin. Machine Learning. The science of selection under uncertainty.
https://arxiv.org/pdf/2509.21547, 2025.



https://arxiv.org/pdf/2509.21547

Hoeffding: IP’(IE E ’iLlZi] —% iz =2 J%) <4
Occam’s razor — Generalization bound for countable H

* Theorem (Occam’s razor): Let m(h) be nonnegative and

1 The bound for a finite H is a special case

N s
2n

]

< 0.

P\3heH:L(h) >L(hS) + In-s

M
P(Elh € H:L(h) > L(h,S) + T) <4

independent of S and satisfy Zhe¢>n(h) < 1. Then:

* Proof: 2(h) = —
M

2n

7 lnrc(ill)S
(Union bound) < Ynexr P\ L(h) = L(h,S) + -

(Hoeffding, m is independent of S!) < Yhex(h)d
(XLhex (h) < 1) )

7 lnn(i11)5
P\3he H:L(h) = L(hS)+




Occam’s razor selection

1
In
P\ 3nea:L(h) > Lhs) + —8 | o5
2n
\
In 1
P\ vhet: L) <L(hS)+ |—U0 |51 5
2n
N
In 1
ﬁf{- =argmin L(h,S) + m(h)d
h — 2n
Empirical \1

Performance Eomp'lexit}j

ln;
= AL

2n

With probability at least 1 — §: L(h$) < L(hs, S) +



Application example: binary decision trees

An alternative

representation
}[0 }[1 }[2
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Application example: binary decision trees

1 1
w(Hy) = E w(H,) = Z
Ho Hy
o I\
0/1  0/1
|~7'[0| =2 |~7'[1| =4
* H =Ug-oHy

d(h) - depth of tree h

n(h) = n(Ham))

1 1
T ad(h)+1 sz(h)

[ Hamwl

* Yhexm(h) = Xg-0 Zhe}[dﬂ(h) =1

1
(H,) = g m(Hy) =

= 1
2.7

2d+1 Occam: pick (h), such that
HH, Ynere T(h) < 1. With probability
o A1 atleast1 — 6, forallh e H
AEA In (i11)5
0/1 0/1 0/1 0/1 L(h) <L(hS)+ il
2n
V
|7, | = 16 |Hql = 2%
With probability at least 1 — §, forall h € H:
) (240 + d(h) + 1) In(2) + In5
L(h) < L(h,S) +

2n



:7'[0 }[1 }[2

° y\i 0/\1

The choice of w(h) T a AN

0/1 0/1 0/1 0/1

1
° Tl,'(h) = n(}[d(h)) —|7'[d(h)|

1

[H ]
* Permutation-symmetric trees get the same prior %

_—In2¢
25 —In d(d -+ 1)

w(Hy) °

* Any series that sum up to 1 are acceptable

* In absence of prior knowledge, no reason to discriminate (structurally symmetric prior)

* If we had some prior knowledge, we could incorporate it into the prior

1 1 1

. . . [e'e) — (0 0] —_ 0
* Alternative series: Zd=1 m = Zd=1 (E — E) =1 10 20 30 40 50

(24M+d(h)+1) In(2)+Ing

2n

1

* The bound with m(#,) = Py L(h) <L(hS) +\/

24 In(2)+1n((d(h)+1)(d(h)+2))+Ing

2n

1
(d+1)(d+2)

L(h) <L(h,S) +\/

d . . . : -
« Here |H,4| = 22" is the dominant term, but elsewhere the choice of a series can make a big difference

* The bound with m(Hy) =

. zgleﬁ is almost as close to uniform % asitmayget:Ind(d + 1) = 2Ind. Uniform makes no prior assumptions



Occam and estimation-approximation trade-off

* Occam’s razor resolves the estimation-approximation trade-off
* We do not need to select |H'| before learning starts, we select data-dependently

1
et

\lZn

1

* This is achieved by h-dependent balancing of precision and

confidence m(h)d

:7'[0 }[1 }[2

° y\i 0/\1
0/1 Yoy
0/1 0/1 y\l 0/ \1

] _1 0/1 0/1 0/1 0/1
T

<
2n -

P <E|h € H:L(h) > L(hS)+



1
In—~=
P (Elh € H:L(h) > L(hS) + ”2(:)5> <4

The “prior” m(h)

* The “complexity” m(h) is defined for each h individually, before learning starts

* Large m(h) gives a small complexity term, but due to )., ¢4 m(h) < 1 it cannot be large
for too many h

* The bound is only meaningful for h with w(h) > e™"
» So effectively we work with at most e™ prediction rules
o If (h) is large for h with low L(h, S), we obtain a good bound
e But if m(h) is small for all h with low L(h, S), then the bound is loose
* Therefore, we do not want (h) to be concentrated on too few h
 The bound may be good or bad, but it is always valid (unlike Bayesian approaches)

* t(h) is an auxiliary construction in derivation of the bound

* |t can be used to encode prior knowledge, but it is not a “belief” in the Bayesian sense



Mid-Summary

e <5

e Occam’srazor: P| 3h € H:L(h) > L(h,S) + -
A

e Automatically addresses the estimation-approximation trade-off
* Adaptive data-dependent selection guided by (h)

 Example - binary decision trees:

24MIn(2) + In((d(h) + D(d(h) +2)) + In

1
5

P\3he H:L(h) = L(h,S) +
\ 2n

* Data-dependent selection of depth
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From Occam to PAC-Bayes

* Occam can only handle countable selection
* because it is based on a union bound

* PAC-Bayes handles uncountable selection
* by using change-of-measure inequality instead of the union bound

* and provides refined measure of selection



PAC-Bayesian Analysis @

e Selection — increases estimation error

* PAC-Bayesian analysis
e Randomized classifiers — active avoidance of selection — reduces estimation error

* The idea: instead of committing to a particular classifier, return a distribution over
classifiers (avoid commitment)

* For example: if two classifiers have the same empirical error, do not select among
them, but return a 50/50 distribution

» Stays at the same level of approximation error, but reduces the estimation error

e Can be applied to uncountably infinite H



Randomized Classifiers

* Let p be a distribution on H

e Randomized classification:

1. Sample h ~ p(h)
<2. Observe X

3. Return h(X)

* p is a randomized classifier [ Gibbs classifier

* Expected error: Ep . ) [L(R)]
* Empirical error: Ep_ ;) [Z(h, S)]



Interpretation-friendly PAC-Bayes bound

* With probability at least 1 — ¢, for all p:

2E,|L(h,S)] <KL(p||7T) + In 2\/_> (KL(pHn) + In 2\/_>

E,[L(h)] < E,|L(h,S)| + . . + -

* Pick p that optimizes the trade-off between E, [E(h, S)] and KL(p||m)
- E, [f,(h, S)] - assign high weight to h with small L(h, S)
* KL(p||m) - stay close to 7 in the KL sense
* Extreme case: if p = m, then KL(p||m) = 0. No selection, no penalty!
e Fast rates: small L(h, S) allows more aggressive deviation from 7



Working with the bound

) )

E,[L(h)] < E,|L(h, )]+ X . +

2E,|L(h, S)] (KL(pHn) + In M) 2 (KL(p| IT) + In M)

 Selectm. Example: m(h,,) = N(0,])

* Select p. Example: p(h,,) = N (w*, 1)
e Calculate KL(p||m). In the example: KL(p||7) = ||w*||?

* Calculate E, [Z(h, S)]
* The challenging part

(3



PAC-Bayes-kl inequality

* Binary kl divergence: p, q € |0,1] biases of Bernoulli distribution
* Ki(pllg) =KL(A - p,»II(1-¢q,q)) = (1 —p) 1“1:_2 + plns

* Theorem: For any “prior” distribution m on H that is independent of S

KL(p||m) + ln¥>
<é

n

P <EIp:kl(IEp LR, HIIE,[L(W]) =

* The interpretation-friendly bound shown earlier follows from PAC-Bayes-kl by refined
Pinsker’s inequality: if Kl(p||q) < &, thenqg < p + /2pe + 2¢

- 2B, [L(h,S)](KL(p||m)+In22)  2(KL(p||m)+In2L
. ]P(Elp: IEp[L(h)]ZIEp[L(h,S)]+\/ P ( 5)+ ( 5) <5

n n



Key tool for PAC-Bayes proofs: change of measure

 Donsker-Varadhan’s variational formula:
* InEx.,[e*] = sup(Ex-~,[X] — KL(p||r))

PKTT

* Change of measure inequality:
Forany f,p,and m: E,_,[f (h)] — KL(p||7) < In IEhNR[ef(h)]



Change of measure: E,[f(h, S)] — KL(p||7) < InE e/ 5]

Markov:

PAC-Bayes Lemma p(x>T0) <0

 PAC-Bayes Lemma: for m independent of S

S[efmS)
. [P(Elp:IEp[f(h,S)] > KL(p||m) +In b [5 ”)

<90

* Proof

s[ef RS
P (Hp: E,[f (R, $)] = KL(p||m) + In Eal" [6 ”)

S nef(h,S)
- [P(Elp: E,[f(h,$)] = KL(p||m) = In- & [5 ]])

ES[En[ef(h‘S)]])

é

(independence of T and S)

<P (En[ef(h’s)] > (change of measure)
o)

IA

(Markov’s inequality)

* Change of measure deterministically relates I£ )| (h, S)| — KL(p||) for all p to a single quantity
InE, e/ "5)]. Probabilistic argument is applied only to [, [e/ 5],

* Change of measure serves as a continuous replacement to the union bound.



PAC-Bayes-kl:

KL(p||m) + 1n¥>
<

Proof of PAC-Bayes-Kkl P<3P=kl(IEp[i<h,S)]||IEp[L<h>])z g

PAC-Bayes Lemma:

( [£(h,$)] = KL(pl|m) + In— lES[eﬂh,g)”) 5
~ P\3p: E ) = KL(p]||m) + In <
* Take f (h, S) = nkl (L(h, 5)||L(h)) : 5
* kl-Lemma: Eg [e"kl(z(h's)”“h))] < 2Jn
* Proof of PAC-Bayes-kl:

P (Elp: KI(E,|L(h, ]IIE,[L(R)]) = KL(p”?ln@)

<P (310: E, lnkl (E(h; 5)||L(h))] > KL(p||) + In En[Es[e"kl(z(h.S)l|L(h))]]> (convexity of kl + kl-Lemma)

=0 (PAC-Bayes Lemma)



Modularity of PAC-Bayes

<o

En[ES[ef (h’S)]])

PAC-Bayes Lemma: P (Elp: E,[f(h,S)] = KL(p||m) + In ;

* Different choices of f(h, S) give divergence measures between E, [Z,(h, S)] and E,[L(h)]
+ PAC-Bayes—kl: f (h,S) = nkl (L(h, S)[IL(h))
 kl-Lemma: Eg [e"kl(i(h's)”“h))] < 2vn
+ PAC-Bayes-Hoeffding: f(h, S) = ni (L(h) - L(h $)

ni

* Hoeffding’s Lemma: Eg [e"’l(L(h)_z(h'S))] <es
* PAC-Bayes-Bernstein, PAC-Bayes-Bennett, PAC-Bayes-Unexpected-Bernstein, ...

* Different choices of p and m give different regularizations.

* Gaussian prior and posterior — regularization by ||w||? = ldzlwiz

 Laplacian prior and posterior — regularization by [|w]|; = Zflzl |lw; |



KL(p||T) + ln¥

KI(E,[L(h, H]IIE,[L(R)]) < "

Minimization of the bound

» Relaxation: PAC-Bayes-A (based on refined Pinsker’s inequalit

2+/n

T KL In——

£ < L] KO 0
1—7 Tlﬂ(l—?)

* For a fixed p convex in A, for a fixed A convex in p

e Apply alternating minimization
(h)e —nAL(h,S)

« pi(h) = oG] (Gibbs distribution)
* Holds for any H, but computationally tractable only for finite H
. 2
° Ap — i [Z(hs)] E (0,1]
2n p ,
j KL(plm) T

* The bound is not jointly convex in p and A
e Convergence to a local minimum, but in many practical cases still global



P <3p:kl(mp[i(h, DNEL[L(W)]) =

KL(p||T) + ln@)
<4

n

PAC-Bayes vs. Bayesian learning

* PAC-Bayesian bounds

m(h) is an auxiliary construction in the proof; the
bounds always hold

High-probability guarantee on the distance
between E,|L(k,S)] and E,[L(R)]

The loss function £(h(X),Y) is a central element
and impacts the bound minimizer p*

Holds for all p(h)

Typically assumes ?(h(X),Y) € [0,1]. Otherwise
requires smoothing of p or assumptions ensuring
concentration of L(h, S) around L(h)

p*(h) « m(h)e "LMS) and typically 1 < 1

If £ is not the negative log likelihood, then the
shape of p*(h) may be altogether different

A bound on KL(p||m) is sufficient, no need in
explicit m(h). E.g., distribution-dependent .

* Bayesian learning

m(h) is a prior “belief”.

The Bayes rule provides a way to update prior “belief”
to a posterior “belief” given evidence (data S)

h)P(S|h
p(is) == u)»(s(>| )

The loss function is not part of the basic formulation

The posterior is a conditional distribution p(h|S)

Not directly concerned with concentration, so
unboundedness of £ is not an issue

If £ is negative log-likelihood, then IP(S|h) = e ~nL(h.S)
and p(hlS) o m(R)eE(S)

Requires explicit T (h) to update p(h|S)



Mid-summary

* PAC-Bayes-kl bound: with probability at least 1 — 6, for all p

KL(p||m) + ln%ﬁ

KI(E,[L(h, DH]IIE,[L(R)]) < -

* Interpretation-friendly relaxation

2E,[L(h, S)] <KL(p||7T) + ln%ﬁ) 2 <KL(p|I7T) + In %ﬁ)
+

E,[L(W)] < E,[L(h,$)]| + - -

e Optimization-friendly relaxation

E,[L(h,S)] KL(pllm) + ln%ﬁ

+
A A
1—7 Tl/l(l—7>

E,[L(R)] <
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n points

\
Data-Informed Priors | |

\ )
KL(p||Tc)+ln%ﬁ) <5 Y

m points

. 11>>(ap:kl(IEp[z(h,S)]||Ep[L(h)]) >

n

* |dea: use part of the data to construct (data-informed) 7w and the rest of the data to
compute the bound

* Advantage: “good”
* Disadvantage: the denominator of the bound decreases from n to m

* Challenge: the confidence information on the prior is lost
 How much data were used to construct the prior?
* Was it constructed in a single step or multiple steps?
* Multi-step processing is not very helpful



Recursive PAC-Bayes

* Recursive loss decomposition

Er [L(W)] = Ex, |L(R) = ¥ Er,_, [L(W)]| + ¥, Er,_, [L(R)]

\ )
\ Y } Y

Excess loss
(small variance)

Decompose recursively



Er, [L(A)] = Ex, |L(h) = ¥¢Er,_, [L(A)]| + ¥, [LCR)]

llustration: 3-terms Recursive Decomposition

Er,[L(D)]

Ery [LGD] = B, [L(R) — 15 Er, [LO]| + 75 (B, [L(R) = 12 Er, [LGD]] + 2B, [L(R)])

U
/
/
/
/
/

U

/ | !

J
! [ \
I Visualization | )
Il of the data S, S, S5
|‘ Spllt T4 Ty : T3 |
\\ ————————————————— P e e e e )

~
~
~-~ ________
———————————
________________
————————————————————————



Er, [L(A)] = Ex, |L(h) = ¥¢Er,_, [L(A)]| + ¥, [LCR)]

llustration: 3-terms Recursive Decomposition

Er,[L(D)]

Er, |L(h) = ¥2Er, [L(A)]| + ¥2Er, [L(R)])

Eq,[L(R)] = E,, [L(h) — V3, [L(h’)]] +73 (

’
/
’
’
1

II,
/ |
(]
,,' [ : \
I Visualization | )
l} of the data S, S, S3
|‘ Split: T4 T, : T3 |
\\\~~ ‘-———————————————-:! —————————————————
* Early steps: * Late steps:
* Poor m;_q = large KL(m¢||mi—1) * Good 1m;_q1 = small KL(m,||ms—1)
* Benefit from small variance of the

* Large denominator
e Smally; « .- ¥y excess loss



Er, [L(A)] = Ex, |L(h) = ¥¢Er,_, [L(A)]| + ¥, [LCR)]

llustration: 3-terms Recursive Decomposition

Er,[L(D)]

Er, |L(h) = ¥2Er, [L(A)]| + ¥2Er, [L(R)])

Eq,[L(R)] = E,, [L(h) — V3, [L(h’)]] +73 (
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* A good way to split the data — geometric split (|S;| = 2[S;_1])
* Use little data to bring ; to a “good region”
 Leave sufficient data to bound the last term (ISTI = % ISI)



Empirical evaluation

MNIST Fashion MNIST
Train 0-1 Test O0-1 Bound Train 0-1 Test 0-1 Bound
Uninf. 343 (2e-3) 335 (3e-3) 457 (2e-3) | 382 (2e-3) 384 (2e-3) .464 (2e-3)
Inf. 377 (8e-4) 371 (6e-3) .408 (9e-4) | 412 (1e-3) 413 (6e-3) .440 (1e-3)
Inf. + Ex. 157 2e-3) 151 (3e-3) .192 (2e-3) | .280 (4e-3) .285 (5e-3) .342 (6e-3)
RPBT =2 | .143 (2e-3) .139 (3e-3) .321 (3e-3) | .257 (3e-3) .266 (5¢-3) .404 (3e-3)
RPBT =4 | .112 (1e-3) .109 (1le-3) .203 (8e-4) | .203 (2e-3) .213 (3e-3) .293 (le-3)
RPBT =6 | .103 (1e-3) .101 (1le-3) .166(1e-3) | .186 (4e-4) .198 (1e-3) .255 (1e-3)
RPBT =8 | .101 (1e-3) .097 (2¢-3) .158 (2e-3) | .181 (1e-3) .192 (3e-3) .242 (1e-3)

e Uninformed

* Informed m using half of the data

* Informed T with excess loss

* Mhammedi et al. (2019)
* E,[L(W)] =E,[L(h) — L(h")] + L(hY)

e 17 and h™ trained on half of the data

* Recursive PAC-Bayes (RPB) with S = S5, ..., St



The computational side

* For models with linear training time the overhead is small
* Each data point is used in training just one model

* For models with superlinear training time training a sequence of small
models may be cheaper than training one big model

* If finding 1 involves an approximation, it may be possible to trade-off
computation and accuracy



Mid-summary

* Recursive loss decomposition

Er [L(W)] = Ex, |L(R) = ¥ Er,_, [L(W)]| + ¥, Er,_, [L(R)]

\ } \ )
Y |
Excess loss
(small variance)

Decompose recursively

* No loss of confidence information in the prior; efficient use of the data

* Geometric splits — little data brings ; to a good region



Outline

* Supervised learning — general background on generalization guarantees
 Occam’s razor — “the little brother of PAC-Bayes” [skipped]

e PAC-Bayesian analysis (including distinctions with Bayesian learning)

* Recursive PAC-Bayes — sequential prior updates

* Weighted majority votes (if we reach it...)



Weighted Majority Vote

 Fundamental technique for combining predictions of multiple classifiers
* Used in Random Forests, Boosting, and other techniques

* Can be applied with heterogeneous classifiers

* Wins most ML competitions

e Can be used for derandomization of PAC-Bayes

Key power - Cancellation of errors effect
* [fthe errors are independent, they average out

Main theoretical questions
* Generalization bounds
* Optimization of weights



Weighted Majority Vote — Formal Definition

* Let p be a distribution on H

* In the binary case (Y = {£1})

* MV, (X) = sign(x, h(X)p(h))
* The label getting the higher weight
* Ties resolved arbitrarily

* In the multiclass case (finite Y)
* MV, (X) = argmax 2p, . x)=y P(h) = argmax E._,[1(h(X) = y)]
y y

* The label getting the maximal weight
* Ties resolved arbitrarily



Bounding L(MV,)

* Basic observation:
* If majority vote erred, then at least a p-weighted half of the classifiers erred

« L(MV,(X),Y) <1 (Ep-,[I(h(X) = Y)] =0.5)

p—weighted mass of errors

e Basic bound:
. L(MV,) = Exy)~p[f(MV,(X),Y)]

N e e’
expected loss of

p—weighted
majority vote

< Exy)~p [ I(Ep~,[1(h(X) # Y)]= 0.5)]

p—weighted mass
of errors on (X,Y)

=P y)~p ( Epp[I(h(X) #Y)] = 0.5)

p—weighted mass
of errors on (X,Y)




First order oracle bound (“folk theorem™)

e Theorem: First order oracle bound

L(MV,) < 2 Ep,[L(R)]

expected loss of
p—weighted
randomized classifier

* Proof:

» The basic bound: L(MV,) < P(xy)~p(Ep-,[1(R(X) # Y)] = 0.5)

 Take Z = Ep,[1(R(X) # Y)]

p—weighted mass of errors on X))

« L(MV,) < P(Z = 0.5) < 2Exy)-plZ]
Markov

= 2By~ |En-p 1K) # V]| = 2By [Egry-p[IAXK) # V]| = 2By, [L(R)]



First order empirical bound

L(MV,) < 2Ep-p[L(R)]

First order oracle bound

En-plL(h,S)]  KL(p|lm)+In2s"
A

1-3 na(1-3)

PAC—Bayesian bound on Ep~plL(R)]

<2

* Advantages:
* Reasonably tight

* Disadvantages:
* The oracle bound ignores correlations of errors (the main power of MV)
* Optimization of the empirical bound leads to deterioration of the test error



Second order oracle bound

Define tandem loss for pairs of classifiers h,h’ ¢ Proof:

* £(h(X),h' (X),Y) =1(h(X) #Y) = 1I(h'(X) #Y) * Second order Markov’s inequality:
andem loss 2 2 2 2
* Counts an error if both h and i:’ elcflr onl (X,Y) P(Z=ze) <P(Z°z¢%) <E[Z 1/¢
Expected t,andem loss: , * As before, take Z = Ep., [1(h(X) # Y)]
* L(h,h') = Exyy~p[f(h(X),h'(X),Y)]
Empirical tandem loss: + L(MV,) < P(Z = 0.5)
. z(h’ h” S) — %Z?:l [(h(Xl), h’(Xl.), Yl) The basic bound

< 4IE(X,Y)~D [ZZ]
= 4E(xyy-p[(En-p [ICh(X) = Y)])?]

= 4E (x y)~p [E(pn')~p2 [1(A(X) # Y) * I(R'(X) # Y)]]
Theorem: Second order oracle bound tandem loss
= 4‘[E(h,h’)~p2 [[E(X,y)~p [I(h(X) # Y) = 1(h'(X) # Y)]]

tandem loss

L(MVP) < 4 [E(h,h’)NpZ[ L(h; h’) ]
expected
tandem loss

= 4E () ) p2[L (R, h)]



Second order empirical bound

L(MWO) < 4]E(h,h’)~pz [L(h, h’)]

E(,p)-p2[L(RR"S)]  KL(p?n2)+1n2L
1—5 Tl/l(l-;)

PAC—-Bayesian bound on ]E(h h')~p2 [L(h,h")]

2\n
5

B E(pnr)~p2[L(RR'S)] 2KL(p||Im)+In
— 4 — PO
—3 n(1-3)

* Advantages:
e Takes correlation of errors into account
* Minimization does not deteriorate the test error

e Disadvantages:

* The tandem loss is harder to estimate (both computationally and statistically), therefore the bound is often weaker
than the first order bound

* Butitis still a better bound to optimize, because it does not deteriorate the test error



Empirical evaluation
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Empirical evaluation

The optimized weights p*
generated by the first order
[FO] and the second order
ITND] bound.

The result can be used for
pruning the majority vote.
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Mid-summary

* The basic bound:

« L(MV,) < Pxy)-p(En-p[1(h(X) # ¥)] = 0.5) * Follow-ups:

* Bounds based on Chebyshev-Cantelli instead of
second order Markov

* First order bound + Wu etal, NeurIPs, 2021
~ N . .
Epo[L(hS)]  KL(p|lm)+In2" * Chebyshev-Cantelli + PAC-Bayes-split-kI
* L(MY,) < 2Ep-p[L(W)] < 2 ot (1D) ° - Wu and Seldin, NeurlPS, 2022
2 2

First order oracle bound

PAC—Bayesian bound on Ep~p[L(R)]

* lgnores correlations of errors
* Minimization degrades the test error

e Second order bound

* L(MV,) < 4E(, )2 [L(R,AD] < 4

Second order oracle bound

E(pnt)-p2[L(RA'S)]  2KL(p i) +In 2L
13 na(1-3)

e Takes correlations of errors into account
* Does not deteriorate the test error
* May be weaker than the first order bound



Summary

Occam’s razor (with fast rate!) — “the little brother”

1
2L(h,S)In—== 2In——=
P\ 3h e #:L(h) = L(h,S) + " (h)5 n(h)5 <6
* Flexible definition of complexity — prior knowledge 7 (h)
* PAC-Bayes
2E,[L(h, 9)] (KL(PHTI) + ln¥> 2 (KL(plln) + ln¥>
P\ 3p: E,[L(R)] = E,[L(h, )] + ~ + - <6

* Refined measure of selection KL(p||m). No selection — no penalty!

Recursive PAC-Bayes
Er [L(W] = Er, |L(h) = ¥eEr, [LO]| + VeEr,_, [L(A)]
* Sequential prior updates with no loss of confidence information

Weighted majority votes
L(MV,) < 2E,-,[L(Rh)]
L(M ) < 4E(h,h')~p2 [L(h h’)]

* Open question: recursive bounds for the weighted majority votes?



Further reading

* Yevgeny Seldin. Machine Learning. The science of selection under
uncertainty. https://arxiv.org/pdf/2509.21547, 2025.



https://arxiv.org/pdf/2509.21547
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