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How do we view uncertainty?

The parameter is fixed and  
the data is random 

"If I ran this experiment  
several times, 95% of the 

confidence intervals I build  
using this procedure would 

contain the true mean."

The data is fixed and  
the parameter is random 

"Given the observed data  
and my prior, there is a 95% 
posterior probability that the  

true mean lies within this 
credible interval."

Frequentists Bayesians



Can we get the best of both worlds?

Uncertainty directly on a parameter, 
without having to interpret results 
through the lens of repeated sampling…

…but in a completely data-dependent 
framework that doesn’t require the 
specification of a prior distribution



Outline

1. Prequential forecasting and proper scoring


2. Martingale posterior distributions (Fong et al., 2023)


3. Model uncertainty via predictive resampling


A. Illustration: density estimation


B. Illustration: hypothesis testing



Prior works have emphasized the value of prediction

Geisser (1982), “Aspects of the predictive and estimative approaches in the determination of probabilities”



Prior works have emphasized the value of prediction

Dawid (1984), “Statistical theory: the prequential approach”



• Suppose I have a model  and start to observe some data 


• How do I evaluate this model’s forecasts? I use a scoring rule 

• For example, I could use a very simple rule where I score one point if my most-
likely guess is correct, and zero points otherwise 

ℳ x1, x2, …

S(x, ℳ) = {
1, if x = arg max

y
ℳ(y),

0, otherwise

A scoring rule is a summary measure

Matheson and Winkler (1976), “Scoring Rules for Continuous Probability Distributions”



The marginal likelihood is a scoring rule

• The Bayesian marginal likelihood of any model  can be factorized as a 
product of one-step-ahead predictive densities





• By logging each side, we get a scoring rule!


ℳ

p(x1:n ∣ ℳ) =
n

∏
i=1

pℳ(xi ∣ x1:i−1)

S(x1:n, ℳ) = log p(x1:n ∣ ℳ) =
n

∑
i=1

log pℳ(xi ∣ x1:i−1)



• It turns out that this particular scoring rule has some nice properties:


• It’s prequential, treating the data as if they arrive in sequence, like in reality


• It’s proper, because its expectation is maximized by using the true 
distribution for forecasting — there’s no way to “game the system”


• It’s unique in guaranteeing coherent model evaluation


S(x1:n, ℳ) = log p(x1:n ∣ ℳ) =
n

∑
i=1

log pℳ(xi ∣ x1:i−1)

The marginal likelihood is a scoring rule

Fong and Holmes (2020), “On the Marginal Likelihood and Cross-Validation”
Gneiting and Raftery (2007), “Strictly Proper Scoring Rules, Prediction, and Estimation”



• We know that the Bayes factor is the ratio of evidence between two models


 


• This means the Bayes factor has an interpretation based on prequential scoring


BF =
p(x1:n ∣ ℳ1)
p(x1:n ∣ ℳ2)

log BF = S(x1:n, ℳ1) − S(x1:n, ℳ2)

The Bayes factor is a marginal likelihood (ratio)

I.J. Good (1952), “Rational Decisions”
Dawid (1984), “Statistical theory: the prequential approach”



• Our favorite model selection rule is the BIC (because it has “Bayesian” in it)


 


• Optimizing the BIC is asymptotically equivalent to optimizing the Bayes factor





• This allows the BIC to inherit key properties of the Bayes factor, specifically 
consistency — the probability of selecting the correct model converges to one

BIC(ℳj) = − 2 log p(x1:n ∣ ℳj, ̂θj) + dj log(n)

log BF ≈ −
BIC(ℳ1) − BIC(ℳ2)

2

The BIC is (approximately) the Bayes factor

Schwarz (1978), “Estimating the dimension of a model”
Kass and Raftery (1995), “Bayes factors”



The BIC is an optimal predictive summary measure!

• How do we evaluate model predictions?


➡ We use a scoring rule 

➡ such as the marginal likelihood 

➡ which is captured by the Bayes factor 

➡ which is approximated by the BIC

Dawid (1992), “Prequential Analysis, Stochastic Complexity, and Bayesian Inference”



Outline

1. Prequential forecasting and proper scoring


2. Martingale posterior distributions (Fong et al., 2023)


3. Model uncertainty via predictive resampling


A. Illustration: density estimation


B. Illustration: hypothesis testing



Uncertainty comes from missing data

Roberts (1965), “Probabilistic prediction”



Uncertainty comes from missing data



Uncertainty comes from missing data

Observe Y1:n

Conduct inference  
on parameter(s) θ

Retrieve uncertainty  
over data Yn+1:∞

Conduct inference  
on parameter(s) θ

Retrieve uncertainty  
over data Yn+1:∞

The data are a function of the parameters

The parameters are a function of the data



Simulate Yi+1 ∼ p( ⋅ ∣ Y1:i)

Update p( ⋅ ∣ Y1:i) → p( ⋅ ∣ Y1:i+1)

Repeat over several  
Monte Carlo iterations 
(stopping in practice at  

some large N >> n)

Calculate final 
parameter 

θ∞ = θ(Y1:∞)

The predictive resampling pipeline



Different perspective, same uncertainty

Fong et al. (2023), “Martingale posterior distributions”

likelihood prior



Different perspective, same uncertainty

Fong et al. (2023), “Martingale posterior distributions”

The predictive uncertainty from 
the imputation of additional data…

…is equivalent to the usual posterior 
uncertainty from Bayesian methods



What type of uncertainty is this?

Fong et al. (2023), “Martingale posterior distributions”

The total variance can be decomposed into aleatoric and epistemic
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Outline

1. Prequential forecasting and proper scoring


2. Martingale posterior distributions (Fong et al., 2023)


3. Model uncertainty via predictive resampling


A. Illustration: density estimation


B. Illustration: hypothesis testing



Draper (1995), “Assessment and propagation of model uncertainty” 

Let our model  consist of structural assumptions , such as the 
link function in a GLM, and parameters  whose meaning depends on 

ℳ = {S, θ} S
θ S

Acknowledging model structure



Bayesian model averaging

P(ξ ∣ 𝒟) =
K

∑
k=1

P(ξ ∣ ℳk, 𝒟) P(ℳk ∣ 𝒟)

P(ξ ∣ 𝒟) =
P(𝒟 ∣ ξ) P(ξ)

P(𝒟)
P(ξ ∣ 𝒟, ℳ*) =

P(𝒟 ∣ ξ, ℳ*) P(ξ ∣ ℳ*) P(ℳ*)
P(𝒟 ∣ ℳ*)

model weighting

model selection 
with AIC, BIC, etc.



Where do we get the weights?

Existing approaches share some common concerns


• Specification of priors 
• Complex integration over parameter spaces 
• Inexact or approximate results


So we return to our guiding principle from earlier…



Uncertainty comes from missing data

Observe Y1:n

Conduct inference  
on parameter(s) θ

Retrieve uncertainty  
over data Yn+1:∞

Conduct inference  
on parameter(s) θ

Retrieve uncertainty  
over data Yn+1:∞

The data are a function of the parameters

The parameters are a function of the data



Uncertainty comes from missing data

Observe Y1:n

Conduct inference  
on model(s) ℳ

Retrieve uncertainty  
over data Yn+1:∞

Conduct inference  
on model(s) ℳ

Retrieve uncertainty  
over data Yn+1:∞

The data are a function of the model

The model is a function of the data



Simulate Yi+1 ∼ ℳ ̂k(i)

Update ℳ ̂k(i) → ℳ ̂k(i+1)

Repeat over several  
Monte Carlo iterations 
(stopping in practice at  

some large N >> n)

Calculate  
final model 

ℳ∞ = ℳ ̂k(∞)

The predictive resampling pipeline



Repeat over several  
Monte Carlo iterations 
(stopping in practice at  

some large N >> n)

Calculate  
final model 

ℳ∞ = ℳ ̂k(∞)

The predictive resampling pipeline

Key requirement: specification of a consistent 
one-step model selection criterion, which is then 
converted directly into a measure of uncertainty


BIC          AIC          LOO-CV


Convergence again comes from martingales



Outline

1. Prequential forecasting and proper scoring


2. Martingale posterior distributions (Fong et al., 2023)


3. Model uncertainty via predictive resampling


A. Illustration: density estimation


B. Illustration: hypothesis testing



Problem: Find the 
number of components 
in a Gaussian mixture 

model (GMM)



Problem: Find the 
number of components 
in a Gaussian mixture 

model (GMM)



Problem: Find the 
number of components 
in a Gaussian mixture 

model (GMM)



Outline

1. Prequential forecasting and proper scoring


2. Martingale posterior distributions (Fong et al., 2023)


3. Model uncertainty via predictive resampling


A. Illustration: density estimation


B. Illustration: hypothesis testing



How do we test a hypothesis?

The parameter is fixed and  
the data is random 

"If I ran this experiment  
several times, I’d expect  

to reject the null hypothesis  
only 5% of the time when  

it is actually true.”

Frequentists

The data is fixed and  
the parameter is random 

"Given the observed data  
and my prior, there is a 95% 
posterior probability that the  

alternative hypothesis is  
true over the null."

Bayesians



Simple point hypothesis demonstration

Unknown mean parameter for 

Observed data 







𝒩(θ, 1)
x1, …, xn

H0 : θ = 0
H1 : θ = 0.1

max
θk

ℒ =
n

∑
i=1

log p(xi ∣ θk) ⟶ xn+1 ∼ 𝒩(θ ̂k (n), 1)
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Simple point hypothesis demonstration

Decision rule on a population summary statistic



Two-sided hypothesis demonstration
Unknown binomial proportion parameter


Observed data 







x1, …, xn

H0 : θ = 0.5
H1 : θ ≠ 0.5

min
Hk

BIC = − 2 ̂ℒ (x1:n ∣ Hk) + dk log(n)



Null hypothesis ( ) 
🍊  🍏 

H0
=

θ = 0.5

Alternative hypothesis ( ) 
🍊  🍏 

H1
≠

θ ≠ 0.5

Suppose I run a survey and observe 168 🍊 and 132 🍏 out of 300 total (56%)



Frequentist 

If the null hypothesis is true,  
how extreme would my  

result be if I repeated this 
experiment several times? 

Null hypothesis ( ) 
🍊  🍏 

H0
=

θ = 0.5

Alternative hypothesis ( ) 
🍊  🍏 

H1
≠

θ ≠ 0.5

Suppose I run a survey and observe 168 🍊 and 132 🍏 out of 300 total (56%)
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…the chance of 168 
or more 🍊 is 2.15%

If the true split is 50/50…

🍊🍏



Null hypothesis ( ) 
🍊  🍏 

H0
=

θ = 0.5

Alternative hypothesis ( ) 
🍊  🍏 

H1
≠

θ ≠ 0.5

Suppose I run a survey and observe 168 🍊 and 132 🍏 out of 300 total (56%)

The chance of 168 or 
more 🍊 is 2.15%


If it’s less than 2.5%/5%, 
reject the null 

hypothesis

Frequentist 

If the null hypothesis is true,  
how extreme would my  

result be if I repeated this 
experiment several times? 



Null hypothesis ( ) 
🍊  🍏 

H0
=

θ = 0.5

Alternative hypothesis ( ) 
🍊  🍏 

H1
≠

θ ≠ 0.5

Suppose I run a survey and observe 168 🍊 and 132 🍏 out of 300 total (56%)

Bayesian 

What is the evidence  
for each hypothesis  

given the observed data?
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🍊🍏

…the chance of 
exactly 168 🍊 

is 0.53%
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If the true split  
could be anything…

🍊🍏

…the chance of 
exactly 168 🍊 

is 0.33%



Null hypothesis ( ) 
🍊  🍏 

H0
=

θ = 0.5

Alternative hypothesis ( ) 
🍊  🍏 

H1
≠

θ ≠ 0.5

Suppose I run a survey and observe 168 🍊 and 132 🍏 out of 300 total (56%)

What is the evidence  
for each hypothesis  

given the observed data?

The ratio of these 
values is 61.6%, so we 

find that there is  
greater evidence for  
the null hypothesis



Null hypothesis ( ) 
🍊  🍏 

H0
=

θ = 0.5

Alternative hypothesis ( ) 
🍊  🍏 

H1
≠

θ ≠ 0.5

Suppose I run a survey and observe 168 🍊 and 132 🍏 out of 300 total (56%)

What is the evidence  
for each hypothesis  

given the observed data?

The “paradox” comes 
from the prior — we’ve 
implicitly assumed that 
a single value ( ) 
is just as likely as any 
value between 0 and 1

θ = 0.5



Two-sided hypothesis demonstration
Unknown binomial proportion parameter


Observed data 







x1, …, xn

H0 : θ = 0.5
H1 : θ ≠ 0.5

min
Hk

BIC = − 2 ̂ℒ (x1:n ∣ Hk) + dk log(n)



Unknown binomial proportion parameter

Observed data 







x1, …, xn

H0 : θ = 0.5
H1 : θ ≠ 0.5

min
Hk

BIC = − 2 ̂ℒ (x1:n ∣ Hk) + dk log(n)

Two-sided hypothesis demonstration

̂ℒ at θ = 0 and dk = 0 ⟶ xn+1 ∼ Bernoulli(0.5)



Unknown binomial proportion parameter

Observed data 







x1, …, xn

H0 : θ = 0.5
H1 : θ ≠ 0.5

min
Hk

BIC = − 2 ̂ℒ (x1:n ∣ Hk) + dk log(n)

Two-sided hypothesis demonstration

̂ℒ at θ = x̄n and dk = 1 ⟶ xn+1 ∼ Bernoulli(x̄n)



168 🍊  
132 🍏

H0
168 🍊  
133 🍏 H0

168 🍊  
134 🍏 H0

H0
169 🍊  
132 🍏 H1

170 🍊  
132 🍏 H1

H0
169 🍊  
132 🍏 H1

169 🍊  
133 🍏 H0

…

Compare 
models

Sample  
new data

Sample  
new data

Compare 
models

Compare 
models

…

…

Observe  
data



Two-sided hypothesis demonstration

The final probabilities are 76.9% for the null and 23.1% for the alternative 

Results have a prior-free interpretation in terms of posterior uncertainty


Evidence can be accumulated in favor of the null



DALL-E

Thank you!
“A general framework for 

probabilistic model uncertainty” 
(Shirvaikar, Walker, and Holmes)


https://arxiv.org/abs/2410.17108

https://arxiv.org/abs/2410.17108

