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How do we view uncertainty?

The parameter is fixed and The data is fixed and
the data is random the parameter is random

"If | ran this experiment "Given the observed data
several times, 95% of the and my prior, there is a 95%
confidence intervals | build posterior probability that the
using this procedure would true mean lies within this
contain the true mean.” credible interval.”




Can we get the best of both worlds?

Uncertainty directly on a parameter,
without having to interpret results
through the lens of repeated sampling...

...but In a completely data-dependent
framework that doesn’t require the
specification of a prior distribution



Outline

1. Prequential forecasting and proper scoring
2. Martingale posterior distributions (Fong et al., 2023)
3. Model uncertainty via predictive resampling

A. lllustration: density estimation

B. lllustration: hypothesis testing



Prior works have emphasized the value of prediction

All this is not to deny the usefulness and convenience of parametric models; clearly, the
extraordinarily appealing notion of exchangeability when applied to statistical paradigms
implies the mathematical existence of the lurking parameter as evidenced by the de Finetti
representation theorem. Further, in some situations parameters may be important hypotheti-
cal constructs in providing an appropriate lubricant or focus for a model and in planning an
experimental program whether or not they can be regarded as real physical entities. How-
ever, the time has come for statistical analyses to emphasize the observable and the finite in
contrast to the potentially artificial and infinite.

Geisser (1982), “Aspects of the predictive and estimative approaches in the determination of probabilities”



Prior works have emphasized the value of prediction

SUMMARY

The prequential approach is founded on the premiss that the purpose of statistical
inference is to make sequential probability forecasts for future observations, rather
than to express information about parameters. Many traditional parametric concepts,
such as consistency and efficiency, prove to have natural counterparts in this
formulation, which sheds new light on these and suggests fruitful extensions.

3. PREQUENTIAL FORECASTING SYSTEMS

So now let X =(X,, X,,...) be a sequence of uncertain quantities. At any time n, the pre-
quential forecaster, with the values x(®) of X.=(X,,X,,... X,) to hand, must issue a
probability forecast distribution P, +; for the next observation X, ;.

Dawid (1984), “Statistical theory: the prequential approach”



A scoring rule Is a summary measure

e Suppose | have a model ./ and start to observe some data x, x,, ...

« How do | evaluate this model’s forecasts? | use a scoring rule

 For example, | could use a very simple rule where | score one point if my most-
likely guess is correct, and zero points otherwise

1, ifx=argmax . Z(y),
Sx, M) = y

0, otherwise

Matheson and Winkler (1976), “Scoring Rules for Continuous Probability Distributions”



The marginal likelihood is a scoring rule

 The Bayesian marginal likelihood of any model .Z can be factorized as a
product of one-step-ahead predictive densities

n
Py, | M) = Hp%(xi | X1.i-1)
i=1
By logging each side, we get a scoring rule!

Sy M) =log p(x,.,, | M) = Z log p4(x; | X1.i-1)
i=1



The marginal likelihood is a scoring rule

|t turns out that this particular scoring rule has some nice properties:
* |t’s prequential, treating the data as if they arrive in sequence, like in reality

* |t’s proper, because its expectation is maximized by using the true
distribution for forecasting — there’s no way to “game the system”

* |t’s unique in guaranteeing coherent model evaluation

Sy M) = log p(xy.,, | M) = Z log p4(x; | X1.i-1)
=1

Gneiting and Raftery (2007), “Strictly Proper Scoring Rules, Prediction, and Estimation”
Fong and Holmes (2020), “On the Marginal Likelihood and Cross-Validation”



The Bayes factor is a marginal likelihood (ratio)

 \WWe know that the Bayes factor is the ratio of evidence between two models

Oy, | AY)
p(xlzn ‘ %2)

* This means the Bayes factor has an interpretation based on prequential scoring

BF

log BF — S(xlzn, %1) — S(xlzn, %2)

l.J. Good (1952), “Rational Decisions”
Dawid (1984), “Statistical theory: the prequential approach”




The BIC is (approximately) the Bayes factor

* Our favorite model selection rule is the BIC (because it has

‘Bayesian” in it)

BIC(A ;) = — 2log p(xy., | M é,-) + d;log(n)

* Optimizing the BIC is asymptotically equivalent to optimizing the Bayes factor

BIC(M ) — BIC(M.,)

loc BF ~ —
5 >

* This allows the BIC to inherit key properties of the Bayes factor, specifically
consistency — the probability of selecting the correct model converges to one

Schwarz (1978), “Estimating the dimension of a model”

Kass and F

\aftery (1995), “Bayes factors”



The BIC is an optimal predictive summary measure!

« How do we evaluate model predictions?
= \\We use a scoring rule
= such as the marginal likelihood
= which Is captured by the Bayes factor

= which is approximated by the BIC

the model-selection method which proceeds by maximizing the adjusted
prequential likelihood, or equivalently minimizing the “adjusted stochastic complexity” of
x", —logp;(z") — log «;, will be (almost everywhere) consistent.

Dawid (1992), “Prequential Analysis, Stochastic Complexity, and Bayesian Inference”
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Uncertainty comes from missing data

Clarity is even more easily attainable, perhaps, if it is recognized that an infer-
ence about finite population parameters can be interpreted as a predictive
inference about a sample, namely, the unsampled part of a fintte population.
This sample is already in existence but has not been observed by the statis-

Roberts (1965), “Probabilistic prediction”



Uncertainty comes from missing data

JOURNAL ARTICLE

Martingale posterior distributions ¢
Edwin Fong, Chris Holmes ¥, Stephen G Walker  Author Notes

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 85, Issue 5, November 2023, Pages
Abstract

The prior distribution is the usual starting point for Bayesian uncertainty. In this paper, we present a
different perspective that focuses on missing observations as the source of statistical uncertainty, with the
parameter of interest being known precisely given the entire population. We argue that the foundation of
Bayesian inference is to assign a distribution on missing observations conditional on what has been
observed. In the i.i.d. setting with an observed sample of size n, the Bayesian would thus assign a predictive
distribution on the missing Y,,.,;... conditional on Y;.,,, which then induces a distribution on the parameter.




Uncertainty comes from missing data

The data are a function of the parameters

(" ) ("

Conduct inference Retrieve uncertainty

=
/ on parameter(s) 0 overdata Y, . .

Observe Y.,

The parameters are a function of the data

\ Retrieve uncertainty Conduct inference

—>

overdata t, . .. on parameter(s) 0




The predictive resampling pipeline

Simulate Y, ; ~ p(- | ¥;.) i )
k ) \ Calculate final
parameter
Hoo — H(Yl:oo)
Repeat over several
Monte Carlo iterations

(stopping in practice at
Update p(- | Y;.,) = p(- | Y00 some large N >> n)




Different perspective, same uncertainty

likelihood prior

Let fo(y) = N(y | 0,1), with () = N(6 | 0,1). Given an observed dataset y.,, the tractable
posterior density takes on the form 7(8 | y1.,) = N(0 | 8,,,52) where

i) D ie1Yi o 1
" oon+41

The posterior predictive density then takes on the form p(y | y1.n) = N(y | 6,,1 + &2). For observed
data, we generated y1.,, ue fo(y) for n = 10 with 6§ = 2, giving 6, = 1.84.

Fong et al. (2023), “Martingale posterior distributions”



Different perspective, same uncertainty
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Fong et al. (2023), “Martingale posterior distributions”



What type of uncertainty is this?

2.75 A 0.100 .

250+ Empirical variance of @, . ;
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The total variance can be decomposed into aleatoric and epistemic

Fong et al. (2023), “Martingale posterior distributions”
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Acknowledging model structure

Let our model A = {S, 8} consist of structural assumptions S, such as the
link function in a GLM, and parameters 6 whose meaning depends on $

of S. It is common in statistical theory and practice to acknowledge parametric uncertainty
about 6 given a particular assumed structure S; it is less common to acknowledge structural
uncertainty about S itself. A widely used approach involves enlisting the aid of x to specify
a plausible single ‘best’ choice S* for S, and then proceeding as if $* were known to be
correct. In general this approach fails to assess and propagate structural uncertainty fully
and may lead to miscalibrated uncertainty assessments about y given x. When miscalibration

Draper (1995), “Assessment and propagation of model uncertainty”



Bayesian model averaging

model selection
with AIC, BIC, etc.

P(2 | ) P(S) P(& | S, ™) P(S | M) P(M)

Pl =gy % fiean= PP | M%)

K
P(E| D)= ) P& | M. D) Py | D)
k=1 model weighting



Where do we get the weights?

Existing approaches share some common concerns
e Specification of priors

 Complex integration over parameter spaces
* Inexact or approximate results

S0 we return to our guiding principle from earlier...



Uncertainty comes from missing data

The data are a function of the parameters

(" ) ("

Conduct inference Retrieve uncertainty

=
/ on parameter(s) 0 overdata Y, . .

Observe Y.,

The parameters are a function of the data

\ Retrieve uncertainty Conduct inference

—>

overdata t, . .. on parameter(s) 0




Uncertainty comes from missing data

The data are a function of the model

(" ) ("

Conduct inference Retrieve uncertainty

—>
/ on model(s) A overdata Y, . .

Observe Y.
" The model is a function of the data

\ Retrieve uncertainty Conduct inference

overdata t, . .. on model(s) ./




The predictive resampling pipeline

Simulate ¥iyy ~ M) \ Calculate
final model
M., = N Hoo)
Repeat over several
Monte Carlo iterations

(stopping in practice at
Update .Z iy = M Rt 1) some large N >> n)




The predictive resampling pipeline

Key requirement: specification of a consistent
one-step model selection criterion, which is then
converted directly into a measure of uncertainty

BIC AIC LOO-CV

Convergence again comes from martingales

\

Calculate
final model

M g = Mo

J

Repeat over several

some large N >> n)

Monte Carlo iterations
(stopping in practice at
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Problem: Find the
number of components

in a Gaussian mixture
model (GMM)
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number of components

in a Gaussian mixture
model (GMM)
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How do we test a hypothesis?

Bayesians

The data is fixed and
the parameter is random

Frequentists

The parameter is fixed and
the data is random

"If | ran this experiment
several times, I'd expect
to reject the null hypothesis
only 5% of the time when
It Is actually true.”

"Given the observed data
and my prior, there is a 95%
posterior probability that the

alternative hypothesis is

true over the null."




Simple point hypothesis demonstration

Unknown mean parameter for /4 (6, 1)

Observed data x, ..., x,

max £ = ) log p(x; | 0) — X, ~ N (O, D
G i=1



Simple point hypothesis demonstration
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Two-sided hypothesis demonstration

Unknown binomial proportion parameter

Observed data x, ..., x,

H,:0#0.)5



Suppose | run a survey and observe 168 & and 132 & out of 300 total (56%)

Null hypothesis (/) Alternative hypothesis ()
2= 2+
0 =0.5 0+ 0.5



Suppose | run a survey and observe 168 & and 132 & out of 300 total (56%)

Null hypothesis (/) Alternative hypothesis ()
5= 5+
0 =0.5 0+ 0.5

Frequentist

If the null hypothesis is true,

how extreme would my
result be if | repeated this
experiment several times?
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0.00

If the true split is 50/50...

..the chance of 168
or more J is 2.15%




Suppose | run a survey and observe 168 & and 132 & out of 300 total (56%)

Null hypothesis (/) Alternative hypothesis ()
5= 5#&
0 =0.5 0+ 0.5

Frequentist The chance of 168 or
more 9 is 2.15%

If the null hypothesis is true,

how extreme would my If it’s less than 2.5%/5%.,

result be if | repeated this reject the r]ull
experiment several times? hypothesis




Suppose | run a survey and observe 168 & and 132 & out of 300 total (56%)

Null hypothesis (/) Alternative hypothesis ()
Q=0 D+
0 =0.5 0+ 0.5

Bayesian

What is the evidence
for each hypothesis
given the observed data?




0.04

0.03

0.02

0.01

0.00

If the true split is 50/50...

..the chance of
exactly 168 O
1S 0.53%




0.04
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0.01

0.00

If the true split
could be anything...

...the chance of
exactly 168 O
1S 0.33%
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Suppose | run a survey and observe 168 & and 132 & out of 300 total (56%)

Null hypothesis (/) Alternative hypothesis ()
5=0 5+&
0 =0.5 0+ 0.5

The ratio of these

values is 61.6%, so we What is the evidence
find that there is for each hypothesis
greater evidence for given the observed data?

the null hypothesis




Suppose | run a survey and observe 168 & and 132 & out of 300 total (56%)

Null hypothesis (/) Alternative hypothesis ()
5=0 5+&
0 =0.5 0+ 0.5

The "paradox” comes
from the prior — we’ve
iImplicitly assumed that
a single value (6 = 0.5)
IS just as likely as any

value between 0 and 1

What Is the evidence

for each hypothesis
given the observed data?




Two-sided hypothesis demonstration

Unknown binomial proportion parameter

Observed data x, ..., x,

H,:0#0.)5

min BIC = — 2% (x,., | H,) + d, log(n)
H,



Two-sided hypothesis demonstration

Unknown binomial proportion parameter

Observed data x, ..., x,

H,:0#0.)5

min BIC = — 2% (x,., | H,) + d, log(n)
H,

% at0 =0 and d =0 — x,;~ Bernoulli(0.5)



Two-sided hypothesis demonstration

Unknown binomial proportion parameter

Observed data x, ..., x,

H,:0#0)5

min BIC = — 2% (x,., | H,) + d, log(n)
H,

P ath= x,andd, =1 — x,,; ~ Bernoulli(x,)



Observe

data

Compare
models
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Two-sided hypothesis demonstration

The final probabillities are 76.9% for the null and 23.1% for the alternative

Results have a prior-free interpretation in terms of posterior uncertainty

Evidence can be accumulated in favor of the null



Thank you!

“A general framework for
probabllistic model uncertainty”
(Shirvaikar, Walker, and Holmes)

https://arxiv.org/abs/2410.17108



https://arxiv.org/abs/2410.17108

