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Predictive Bayes foundations

This seminar explores a predictive approach to Bayesian inference, in which the learning
process is specified directly through predictive distributions, rather than by placing
priors on parameters.

The goal is twofold:

To provide conceptual motivation for modeling learning through prediction rather
than priors;

To highlight the practical advantages of this approach, including flexibility,
interpretability, and computational simplicity.

To explain the predictive perspective, we will first revisit the foundational principles of
Bayesian statistics—specifically, what it means to specify a Bayesian model.

In this talk, I focus on the case of independent observations from a common
distribution, while noting that some results extend to more general settings.
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Bayesian statistics as a learning process

Bayesian vs Frequentist

Assume X1,X2, . . . are independent observations from an unknown distribution F .

Frequentist approach:

Estimates F through a data-based estimator.

Distinguishes between:

▶ Aleatory uncertainty : randomness (e.g., coin toss outcomes).
▶ Epistemic uncertainty : lack of knowledge (e.g., how the coin is weighted).

Parameters are fixed but unknown — uncertainty is epistemic.

Bayesian approach (Ramsey (1926), Savage (1954), Dubins and Savage (1965),
de Finetti (1931)):

Assigns a prior distribution to F .

Updates beliefs via Bayes’ rule to get the posterior.

Probability models all types of uncertainty.

Parameters (e.g., coin bias) are treated as random variables.

Key point: The two approaches may look similar, but differ conceptually.



Bayesian statistics as a learning process

Bayesian Statistics as a Learning Process

Bayesian statistics models both observations and parameters within a single
probabilistic framework.

Learning is represented by conditioning: beliefs are updated via conditional distributions.

In the setting of independent observations from an unknown distribution:

The unknown distribution F is treated as a random variable F̃ ∼ π, expressing prior
uncertainty.

Given F̃ = F , the data Xn are i.i.d. from F : (Xn) | F̃ ∼ F̃∞

This defines the joint distribution of (F̃ ,X1,X2, . . . ).

Key point: The Bayesian model is a probability measure on P(X)× X∞.

There is no formal distinction between parameters and observations:

All unknowns are treated probabilistically.

Inference is simply conditioning on observed data.

This is why there are no separate estimators in Bayesian statistics:

Once the model is specified, inference is an exercise in probability.



Bayesian statistics as a learning process

Properties of empirical and predictive distributions

Let (Xn) | F̃ ∼ F̃∞, F̃ ∼ π, and

F̂n(A) =
1

n

n∑
i=1

δXi (A) empirical distribution

Pn(A) = P(Xn+1 ∈ A | X1, . . . ,Xn) predictive distribution

For every bounded continuous function g∫
g(x)F̂n(dx) =

1

n

n∑
i=1

g(Xi )
P(·|F̃ )−→ E(g(X1) | F̃ ) =

∫
g(x)F̃ (dx).

Marginalizing with respect to F̃ , we see that the empirical distribution F̂n

converges weakly to F̃ , P-a.s.
In particular, F̃ is a function of (Xn).

Pn converges weakly to F̃ :

Pn(A) = E(P(Xn+1 ∈ A | F̃ ,X1, . . . ,Xn) | X1, . . . ,Xn)

= E(F̃ (A) | X1, . . . ,Xn) → E(F̃ (A) | X1,X2, . . . ) = F̃ (A).



Bayesian statistics as a learning process

A Bayesian model via the distribution of the observations

Consider again (Xn) | F̃ ∼ F̃∞, F̃ ∼ π, which defines a probability measure on
P(X)× X∞.

By marginalizing over F̃ , we obtain the joint distribution of the observation sequence
(X1,X2, . . . ).

However, F̃ is a function of the sequence (Xn):

F̃ (A) = lim
n→∞

F̂n(A) = lim
n→∞

Pn(A),

where

F̂n(A) =
1

n

n∑
i=1

δXi (A) (empirical distribution),

Pn(A) = P(Xn+1 ∈ A | X1, . . . ,Xn) (predictive distribution).

Thus, this Bayesian model is fully characterized by the joint distribution of (Xn).



Bayesian statistics as a learning process

de Finetti’s Theorem

Key question: When does the distribution of (Xn) admit a representation

(Xn) | F̃ ∼ F̃∞ for some random F̃?

de Finetti’s Theorem (1930s)

There exists F̃ such that (Xn) | F̃ ∼ F̃∞

if and only if (Xn) is exchangeable, i.e.,

(Xσ(1),Xσ(2), . . . )
d
= (X1,X2, . . . )

for every finite permutation σ of N.

Interpretation: de Finetti’s theorem suggests an alternative way to define a Bayesian
model:

Specify directly an exchangeable distribution for the observations.

Contrast with frequentist modeling:

The probabilistic model accounts for both aleatory and epistemic uncertainty.

Even under random sampling, the Xi are not independent:
observing X1, . . . ,Xn gives information about Xn+1,Xn+2, . . . .



Bayesian statistics as a learning process

Assigning a Bayesian model through a joint distributions of
the observations

What is the advantage of directly specifying an exchangeable distribution for the
observations?

It eliminates the need to assign a prior distribution to parameters that lack a clear
interpretation in terms of observables.

However, a prior distribution is still implicitly defined.

By de Finetti’s theorem, the distribution of (Xn) implicitly defines a random
distribution F̃ .

F̃ is the almost sure limit of both the empirical and the predictive distributions.



Bayesian statistics as a learning process

Specifying a Bayesian Model via Predictive Distributions

In practice, assigning the full law of (X1,X2, . . . ) in a way that captures both intrinsic
aleatory and epistemic uncertainty is challenging.

Predictive distributions offer a solution.

It is well known that the joint distribution of a sequence (Xn) can be constructed from its
sequence of predictive distributions:

Theorem (Ionescu-Tulcea)

Let P0 be a probability measure on a measurable space (X,X ), and for each n ≥ 1, let
Pn be a function satisfying:

(i) For each A ∈ X , Pn(A | x1, . . . , xn) is measurable in (x1, . . . , xn),

(ii) For each fixed (x1, . . . , xn), Pn(· | x1, . . . , xn) is a probability measure on X .

Then there exists a stochastic process (Xn) such that:

X1 ∼ P0, Xn+1 | X1, . . . ,Xn ∼ Pn(· | X1, . . . ,Xn)

Moreover, the joint distribution of (Xn) is uniquely determined.

Advantage: Predictive distributions naturally reflect epistemic uncertainty:
Pn encodes our beliefs about Xn+1 given the data X1, . . . ,Xn.



Bayesian statistics as a learning process

Predictive distributions as learning rules

In this perspective, a predictive distribution is not a physical mechanism generating Xn+1

from past data.

Rather, P(Xn+1 ∈ A | X1, . . . ,Xn) is a learning rule:
a conditional probability that formalizes how we update our beliefs about future events
based on current information.

We refer to this predictive perspective as predictive modeling.

In predictive modeling, reasoning focuses on observable quantities
and on how the sample informs prediction.

Predictive modeling is also intriguing as a form of Bayesian learning without a prior:
no explicit prior is required, although a prior may be implied by the predictive structure.



Bayesian statistics as a learning process

Example: Predictive Learning for Binary Outcomes

Example (Eggenberger and Pólya (1923); Pólya (1931))

Let (Xn) be a sequence of random variables taking values in {0, 1}.

We aim to learn the probability of observing a 1 by directly modeling predictive
probabilities.

Initially, the predictive probability for X1 is given by:

P(X1 = 1) =
α1

α
, with α1 < α.

After observing X1, . . . ,Xn, the prediction for Xn+1 is:

P(Xn+1 = 1 | X1, . . . ,Xn) =
α1 +

∑n
i=1 Xi

α+ n
.

This defines a sequence of predictive distributions that reinforce the observed outcomes:
each time a 1 is observed, the predicted probability of future 1’s increases.

Interpretation: Learning occurs through recursive prediction updates—
each observation incrementally adjusts the belief about future outcomes.
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Exchangeability and prediction

Predictive distributions and exchangeability

The Ionescu-Tulcea theorem imposes no constraints on the predictive distributions:
for any sequence (Pn) such that each Pn is a measurable function of X1, . . . ,Xn and a
probability measure, there exists a sequence (Xn) with Pn as its conditional distributions.

Question: What constraints must the (Pn) satisfy in order for (Xn) to be exchangeable?

Theorem (Fortini et al. (2000))

Let (Xn)n≥1 be a sequence of random variables with predictive rule (Pn)n≥0.
Then (Xn) is exchangeable if and only if, for all n ≥ 0:

i) ∀n, ∀A, P(Xn+1 ∈ A | X1, . . . ,Xn) is symmetric in X1, . . . ,Xn.

ii) ∀n, P(Xn+1 ∈ A,Xn+2 ∈ B | X1, . . . ,Xn) is symmetric in (A,B).



Exchangeability and prediction

Example: Verifying Exchangeability

Example (Binary outcomes)

Let (Xn) be binary random variables in {0, 1} with predictive rule:

P(X1 = 1) =
α1

α
, P(Xn+1 = 1 | X1, . . . ,Xn) =

α1 +
∑n

i=1 Xi

α+ n
.

Condition (i): Pn depends only on
∑

Xi ⇒ symmetry in the past.
Condition (ii):

P(Xn+1 = 1,Xn+2 = 0 | X1:n) =
α1 +

∑n
i=1 Xi

α+ n
·
(α+ n + 1)− (α1 +

∑n
i=1 Xi + 1)

α+ n + 1

= P(Xn+1 = 0,Xn+2 = 1 | X1:n).

Conclusion: (Xn) is exchangeable.

Moreover the unknown probability of outcome 1 is:

F̃ (1) = lim
n→∞

α1 +
∑n

i=1 Xi

α+ n
= lim

n→∞

∑n
i=1 Xi

n

(Strong law of large numbers for exchangeable sequences).



Exchangeability and prediction

Necessity of the second condition

Notice that the symmetry of P(Xn+1 ∈ A | X1, . . . ,Xn) is not sufficient for
exchangeability.

Example

Let X = {0, 1} and define:

P(X1 = 1) = P(X2 = 1 | X1) = α ∈ (0, 1),

P(Xn+1 = 1 | X1, . . . ,Xn) =

∑n
j=1 Xj

n
for n > 1.

Then, for example,

P(X1 = 0,X2 = 0,X3 = 1) = 0 ̸= α(1− α)/2 = P(X1 = 0,X2 = 1,X3 = 0),

so the joint distribution is not symmetric.

Assigning predictive distributions that satisfy conditions (i) and (ii) of the above theorem

is not an easy task in general.



Exchangeability and prediction

Sufficient statistics

A useful strategy to simplify the assignment of predictive distributions is to use
predictive sufficient statistics.

First, recall condition (i) in the predictive characterization of exchangeability

P(Xn+1 ∈ A | X1, . . . ,Xn) is symmetric in X1, . . . ,Xn.

which implies that the predictive distribution

Pn is a function of F̂n = 1
n

∑n
k=1 δXk .

If Pn depends on F̂n only through a statistic Tn = T (F̂n), i.e.,

∃qn : Pn = qn(T (F̂n)),

then Tn is called a predictive sufficient statistic.



Exchangeability and prediction

Sufficient statistics and parametric models

Theorem (Fortini et al. (2000))

Under regularity conditions, if T (F̂n) is predictive sufficient, then

∃q : Pn = qn(T (F̂n)) −→ q(T (F̃ )).

This implies that
F̃ = q(T (F̃ )).

Thus,

the model F̃ = q(θ̃) is parametric

the parameter θ̃ = T (F̃ ) is the limit of the sufficient statistic.

The regularity conditions ensure that small changes in the predictive sufficient statistic
Tn do not produce abrupt changes in the predictive distribution Pn.

Dominated parametric models:
If the predictive distributions Pn are:

absolutely continuous with respect to a measure λ, and

converge in total variation,

then the model F̃ = q(θ̃) is dominated (Fortini and Petrone, 2025).



Exchangeability and prediction

Examples of predictive constructions

A natural framework for modeling learning is reinforcement learning (Pemantle, 2007),
where the probability assigned to an event increases whenever the event occurs.

Example (Pólya sequence, Blackwell and MacQueen (1973))

Let X be a Polish space.
The sequence (Xn) is defined by the predictive rule:

X1 ∼ P0, Xn+1 | X1, . . . ,Xn ∼ Pn =
αP0 +

∑n
i=1 δXi

α+ n
, for α > 0.

This predictive construction corresponds to a Bayesian model with:

F̃ ∼ DP(α,P0), Xi | F̃ ∼ F̃ .

It also admits an urn interpretation where the Xn represent colors (Hoppe (1984, 1987),
Aldous (1985))
Description: Start with an urn containing α > 0 black balls. At each step:

If a colored ball is drawn, return it and add another of the same color.

If a black ball is drawn, a new color is drawn from P0 and added to the urn together
with the black ball.



Exchangeability and prediction

Examples of predictive constructions

Example (Kernel-based Dirichlet sequences, Berti et al. (2023))

Kernel-based Dirichlet sequences are exchangeable sequences where the predictive
distribution replaces the point masses δXi of the Pólya urn scheme with a smoothed
version via a probability kernel K :

Pn(·) =
αP0 +

∑n
i=1 K(· | Xi )

α+ n
.

Exchangeability holds if and only if the kernel satisfies

K(· | x) = P0(· | G)(x)

for some σ-algebra G on X (Berti et al. (2023), Sariev and Savov (2024)).

In particular, if K(· | x) ≪ P0 for all x ∈ X, the associated de Finetti measure F̃
corresponds to a mixture model where the component distributions (the kernels) have
known disjoint supports—for instance, a histogram with fixed bins.

This example highlights that exchangeability can be a strong constraint, especially
when aiming for both tractable prediction rules and specific modeling flexibility.
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Conditionally identically distributed random variables

Beyond Exchangeability

There are several reasons to relax the exchangeability assumption, even when modeling
homogeneous observations:

To derive predictive distributions with simpler or closed-form expressions;

To increase modeling flexibility;

To reduce computational cost and avoid MCMC-based methods;

To bypass the need for explicitly specifying a prior.

Key question: How can we relax exchangeability while preserving the idea that
observations arise from the same unknown distribution?



Conditionally identically distributed random variables

Exchangeability and its structural components

An exchangeable sequence (Xn) satisfies, for every n ≥ 2:

(Xn+1,Xn+2, . . . ) | F̃
d
= (X1,X2, . . . ) | F̃ ∼ F̃∞.

Marginalizing:

(Xn+1,Xn+2, . . . )
d
= (X1,X2, . . . ),

so the sequence (Xn) is strongly stationary.

Moreover, an exchangeable sequence (Xn) satisfies ∀n, k

CID condition

Xn+k | (X1, . . . ,Xn)
d
= Xn+1 | (X1, . . . ,Xn) ∼ E(F̃ | X1, . . . ,Xn),

meaning that the Xn are conditionally identically distributed (Berti et al., 2004).

Characterization of Exchangeability (Kallenberg, 1988)

Exchangeability = Stationarity+ CID

The proof is based on the ergodic theorem.



Conditionally identically distributed random variables

Conditionally Identically Distributed (CID) Random
Variables

We can relax the assumption of exchangeability by requiring only the CID condition
(conditionally identically distributed), thereby giving up strong stationarity.

Under the CID condition, all future observations share the same conditional
distribution given the past.

In fact, it is sufficient to assume that just two consecutive future observations have the
same conditional distribution:

Sufficient Condition for CID

Xn+2 | X1, . . . ,Xn
d
= Xn+1 | X1, . . . ,Xn for all n.

This is equivalent to a martingale condition on the predictive distributions:

Martingale Characterization

E(Pn+1(A) | X1, . . . ,Xn) = Pn(A) for all A and all n.

Proof sketch:

E(Pn+1(A) | X1:n) = E
[
P(Xn+2 ∈ A | X1:n+1)

∣∣X1:n

]
= P(Xn+2 ∈ A | X1:n) = Pn(A).



Conditionally identically distributed random variables

Properties of CID sequences

How close is CID to exchangeability?

The Xn are identically distributed

The sequence (Pn) of the predictive distributions is a martingale measure and
converges to a random probability measure F̃ .

By martingale methods, it is possible to prove that if Pn converge to F̃ , then also
the empirical distributions F̂n converge to the same F̃ .

A sequence (Xn) whose predictive distributions converge to a random probability
measure F̃ is asymptotically exchangeable (Aldous, 1985):

(Xn+1,Xn+2, . . . )
d−→ (Z1,Z2, . . . ),

where (Zn) is exchangeable with directing measure F̃ .

Thus, a CID sequence implicitly defines a prior distribution: the law of F̃ .



Conditionally identically distributed random variables

An example of CID sequence

Example (Weighted Pólya Urn, Fortini et al. (2018))

Let X1 ∼ P0, and for any n ≥ 1,

P(Xn+1 ∈ · | X1, . . . ,Xn) =
αP0(·) +

∑n
k=1 WkδXk (·)

α+
∑n

k=1 Wk
,

where the weights Wk are positive random variables, and for every n ≥ 0, Wn+1 is
conditionally independent of Xn+1 given X1, . . . ,Xn.

This weighted Pólya urn scheme models a learning process in which some observations
exert more influence than others.

This scheme accounts for varying levels of reliability across observations, assigning
greater influence to those considered less noisy or more accurate.
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Predictive-based approximations of the posterior distribution.

A Predictive-Based Simulation Scheme

For CID sequences, the associated prior and posterior distributions are generally
unknown in closed form.

However, we can simulate (Fortini and Petrone, 2020, 2023) from the posterior by
exploiting the convergence of the predictive distribution Pn to the directing random
measure F̃ .

To generate a sample from the posterior given observations (x1, . . . , xn):

Select a grid of points t1, . . . , tk ;

Sequentially generate future observations (xn+1, . . . , xN), where each xi+1 is
drawn from the predictive distribution Pi (· | x1, . . . , xi ) for i = n, . . . ,N − 1;

Using the extended sample (x1, . . . , xN), compute [PN(t1), . . . ,PN(tk)];

Since N is large, this vector approximates a sample from the posterior distribution of
[F̃ (t1), . . . , F̃ (tk)];

Repeating the procedure M times yields a Monte Carlo sample of size M from the
posterior.



Predictive-based approximations of the posterior distribution.

A Predictive-Based Asymptotic Approximation of the
Posterior Distribution

While posterior simulation is possible, for large n a direct asymptotic approximation
becomes available.

Theorem (Fortini and Petrone (2023))

Let (αn) be such that

E
[
(Pn(t)− Pn−1(t))

2 | X1, . . . ,Xn−1

]
α2
n

−→ Ut > 0 P-a.s.

Let bn =
(∑

k≥n α
2
k

)−1

and Vn,t =
1

n

∑n
m=1

(Pm(t)− Pm−1(t))
2

α2
m

.

Under mild assumptions,

F̃ (t) | X1, . . . ,Xn ≈ N
(
Pn(t),

Vn,t

bn

)
.

The result extends to [F̃ (t1), . . . , F̃ (tk)].



Predictive-based approximations of the posterior distribution.

Implications of the Predictive-Based Approximation

This result allows for the construction of asymptotic credible intervals for F̃ (t):[
Pn(t)± z1−α/2

√
Vn,t

bn

]
,

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

Since Pn(t) = E(F̃ (t) | X1, . . . ,Xn), the approximation is centered in the posterior mean
of F̃ (t).

Since bn =
(∑

k≥n α
2
k

)−1

, with α2
n ≈ E

[
(Pn(t)− Pn−1(t))

2 | X1, . . . ,Xn−1

]
, then

the size of the interval depends on how fast the predictive updates

∆t,n = Pn(t)− Pn−1(t) → 0.

Typically, |Pn(t)− Pn−1(t)| ≈ |F̂n(t)− F̂n−1(t)| ≈ 1/n so that bn ≈ n.



Predictive-based approximations of the posterior distribution.

Not a Bernstein–von Mises Result

The approximation

F̃ (t) | X1:n ≈ N
(
Pn(t),

Vn,t

bn

)
is not a consistency result in the classical sense.

Classical posterior consistency (as in Bernstein–von Mises theorems) studies the
asymptotic behavior of the posterior distribution assuming the data are i.i.d. from a true
distribution F0.

In our setting, the asymptotic result is given under the distribution of the (Xn) defined
by the sequence of the predictive distribution (Pn).

The goal is to provide an asymptotic predictive-based approximation of the posterior
distribution of F̃ (t).

Consistency and contraction rate are interesting open problems.
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A general framework for defining learning rules

A General Framework for Defining Learning Rules

A broad class of recursive predictive rules can be specified by a recursive scheme:

Recursive Predictive Scheme, Fortini and Petrone (2025)

X1 ∼ P0, and for every n ≥ 1, Xn+1 | X1, . . . ,Xn ∼ Pn,

with {
Pn = qn(Tn),
Tn = hn(Tn−1,Xn),

where qn and hn are given functions, and Tn is a predictive sufficient statistic.

This formulation allows storing only Tn, which can be easily updated from Tn−1 and Xn.

Appropriate choices of qn and hn can ensure desirable properties of the sequence (Xn)n≥1,
such as asymptotic exchangeability.



A general framework for defining learning rules

Bayesian rules as sequential updating procedures

In an exchangeable setting, many common Bayesian models admit this representation.

Example (Two color Pólya urn)

Pn(1) =
α1 +

∑n
i=1 Xi

α+ n
⇝


Pn(1) =

α1 + nTn

α+ n
,

Tn = Tn−1 +
1

n
(Xn − Tn−1)

with T0 = 0

Example (Dirichlet process prior)

Pn =
α+

∑n
i=1 δXi

α(X) + n
⇝


Pn =

α+ nTn

α(X) + n
,

Tn = Tn−1 +
1

n
(δXn − Tn−1).

with T0 = 0.



A general framework for defining learning rules

Beyond Exchangeability

Measure-Valued Pólya Sequences (Sariev and Savov, 2024)

Let R be a finite, non-null transition kernel on the sample space X, γ > 0 a constant,
and P0 a probability measure. Define:

Pn =
γP0 +

∑n
i=1 RXi

γ +
∑n

i=1 RXi (X)
, n ≥ 1.

Set T0 = γP0, and define:  Pn =
Tn

Tn(X)
,

Tn = Tn−1 + RXn .

Urn interpretation:
Any measurable set B ⊂ X starts with mass T0(B). At each step n, B receives an
additional mass RXn (B), which depends on the observed value Xn.

A measure-valued Pólya sequence (Xn)n≥1 is exchangeable if and only if:

RXn (·) = P0(· | G)(Xn)

for some σ-algebra G.



A general framework for defining learning rules

A learning process for mixtures

An example of learning rule satisfying the recursive scheme is the learning rule for
mixtures introduced in (Fortini and Petrone, 2020) and based on Newton’s algorithm
(Newton, 2002).

Let λ be a measure on X, G0 be a measure on Θ, αn > 0,
∑

n αn = +∞ and∑
n α

2
n < +∞. Set P0(dx) =

∫
Θ
k(x | θ)G0(dθ)λ(dx) and, for n ≥ 1,

Pn(dx) =
∫
Θ
k(x | θ)Gn(dθ)λ(dx)

Gn(dθ) = Gn−1(dθ) + αnGn−1(dθ)

(
k(Xn | θ)∫

Θ
k(Xn | θ)Gn−1(dθ)

− 1

)
Gn is a weighted average of Gn−1 and of the posterior, given Xn, with prior Gn−1.

(Gn) is a martingale measure and converges to a random probability measure G̃

(Xn) is CID and therefore asymptotically exchangeable and its asymptotic directing
random measure is F̃ (dx) =

∫
k(x | θ)G̃(dθ)λ(dx)

(Pn) defines implicitly a novel prior which is absolutely continuous with respect to λ

although the posterior distribution of G̃ remains unknown, it is possible to sample
from it and to give asymptotic Gaussian approximations.



A general framework for defining learning rules

Learning via Loss Functions: Binary Classification

A further example of a recursive learning rule is provided by a process for binary
classification introduced in Fortini and Petrone (2025).
At each time step n, a pair (Xn,Yn) is observed, where Xn denotes a feature vector and
Yn ∈ {0, 1} is a binary label.

Sequential learning for classification
Let β0 be a fixed parameter vector. Define:
P0(dx , y) = PX (dx) · g(x , β0)

y (1− g(x , β0))
1−y and{

Pn(dx , y) = PX (dx) · g(x , βn)
y (1− g(x , βn))

1−y , y ∈ {0, 1},
βn = βn−1 − αn∇βL(βn−1;Xn,Yn),

where: - g(x , β) is a known function (e.g., logistic function), - L is a loss function (e.g.,
cross-entropy), - (αn) is a learning rate sequence.

Asymptotic properties (under mild assumptions):

βn
a.s.−→ β̃, a random limit.

The sequence (βn) is a martingale: βn = E(β̃ | X1:n,Y1:n).

The sequence ((Xn,Yn)) is asymptotically exchangeable.

The directing random measure F̃X ,Y satisfies: F̃Y |X = Bernoulli(g(X , β̃)).
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Asymptotics for the Posterior Distribution of β̃

Although the posterior distribution of β̃ is not available in closed form, it is possible to
approximate it using asymptotic Gaussian results (Fortini and Petrone, 2025).

Asymptotic Gaussian approximation

Under mild regularity conditions and with learning rate αn = 1
α+n

:

β̃ | X1:n,Y1:n ≈ Nd

(
βn,

Vn

n

)
,

where

Vn =
1

n

n∑
k=1

k2(βk − βk−1)(βk − βk−1)
T .

This allows us to construct asymptotic credible regions for the random vector β̃.

Importantly, no knowledge of the distribution PX is required.
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Discussion

The Bayesian paradigm provides a powerful framework for learning from data, and
performs well in many contexts.

An alternative perspective is to directly model the learning process, rather than
starting from a prior.

This approach offers greater flexibility and often leads to more interpretable
models.

Specifying simple predictive distributions can greatly simplify computation—without
sacrificing key properties such as asymptotic exchangeability.

Many open questions remain, including:

▶ the study of consistency and contraction rates;
▶ extensions to more general symmetries and complex models.
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Thank you!
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