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PAC-Bayesian Theory

Pioneered by
Shawe-Taylor and Williamson (1997), McAllester (1999), and Catoni (2003).

Number of search results per year for “PAC-Bayes(ian)” keywords on Google Scholar.
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This talk: The Mechanization of PAC-Bayes

Computer scientists [...] must create abstractions of real-world problems that can be understood
by computer users and, at the same time, that can be represented and manipulated inside a
computer.

— Foundations of Computer Science (Aho and Ullman 1992). .
Chapter 1. Computer Science: The Mechanization of Abstraction

Focus on PAC-Bayes for machine learning algorithm design;

Propose to craft neural network architectures inspired from learning theory principles;

A (perfectible) step towards guarantees for nowadays large/multimodal/foundation
“models”.
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Definitions

A learning example z := (x , y) ∈ X × Y = Z is a description-label pair.

Data generating distribution

Each example is an observation from distribution D on Z.

Learning sample

S := { z1, z2, . . . , zn } ∼ Dn

Predictors (or hypothesis)

h : X → Y, h ∈ H
Learning algorithm

A(S) −→ h

Loss function

ℓ : H×Z → R

Empirical loss

L̂S(h)=
1

n

n∑
i=1

ℓ(h, zi )

Generalization loss

LD(h)= E
z∼D

ℓ(h, z)
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A Classical PAC-Bayesian Theorem

PAC-Bayesian theorem (adapted from McAllester 1999; McAllester 2003)

For any distribution P on H, for any δ∈(0, 1], we have,

Pr
S∼Dn

(((
∀Q on H : E

h∼Q
LD(h)︸ ︷︷ ︸

generalization
loss

≤≤≤ E
h∼Q̂

LS(h)︸ ︷︷ ︸
empirical loss

+

√
1
2n

[
KL(Q∥P) + ln 2

√
n

δ

]
︸ ︷︷ ︸

complexity term

)))
≥ 1−δ ,

where KL(Q∥P) = E
f∼Q

ln Q(f )
P(f ) is the Kullback-Leibler divergence.

Valid for all posterior Q on H
Inspiration for conceiving new learning algorithms.
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Tighter bounds for the [0, 1]-loss (Classical PAC-Bayes theorems)

kl
(

E
h∼Q̂

LS(h), E
h∼Q

LD(h)
)
≤≤≤ 1

n

[
KL(Q∥P) + ln 2

√
n
δ

]
kl(q, p) := q ln q

p
+ (1 − q) ln 1−q

1−p

From an algorithm design perspective, the “kl bound” promotes the minimization of

kl−1

(
E

h∼Q̂
LS(h),

1
n

[
KL(Q∥P) + ln 2

√
n

δ

])
:= argsup

0≤p≤1

{
kl
(

E
h∼Q̂

LS(h), p
)

≤ 1
n

[
KL(Q∥P) + ln 2

√
n

δ

]}

The function kl−1 is differentiable (see Reeb et al. 2018)

pyTorch implementation (Viallard et al. 2021):
https://github.com/paulviallard/ECML21-PB-CBound/blob/master/core/kl_inv.py

Lemma (see Letarte et al. 2019)

kl−1

(
E

h∼Q̂
LS(h),

1
n

[
KL(Q∥P) + ln 2

√
n

δ

])
= inf

c>0

{
1

1− e−c

(
c · E

h∼Q̂
LS(h) +

1
n

[
KL(Q∥P) + ln 2

√
n

δ

])}
Pascal Germain (Université Laval) PAC-Bayesian Hypernetworks October 28, 2025 6 / 28

https://github.com/paulviallard/ECML21-PB-CBound/blob/master/core/kl_inv.py


Distribution over parameters

Given a model / predictor hθ, where θ are parameters.

Consider P and Q as distributions over the set of parameters Θ.

∀Q on Θ : kl
(

E
θ∼Q̂

LS(hθ), E
θ∼Q

LD(hθ)
)
≤≤≤ 1

n

[
KL(Q∥P) + ln 2

√
n
δ

]
.

Typical approach for (stochastics) neural networks
(Dziugaite and Roy 2017; Neyshabur, Bhojanapalli, and Srebro 2018; Nozawa, Germain, and Guedj 2020;
Pérez-Ortiz et al. 2021, among many others.)

P = N (Wp, σpI) where Wp are the random/pre-learned weights initialization.

Q = N (W, σI), where W are the learned/fine-tuned neural network weights.

Then, KL(Q∥P) = 1
2∥W −Wp∥2.
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Self-certified learning of neural networks (Pérez-Ortiz et al. 2021)

Build on the pioneer work of
Dziugaite and Roy (2017).

Tight guarantees!

risk ≤ 1.55% on MNIST (CNN)
with probability ≥ 95%.

Easy to train.

Source code (pyTorch):
https://github.com/mperezortiz/PBB
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Overview of our meta-learning framework

Benjamin Leblanc et al. (2025). “Generalization Bounds via Meta-Learned Model
Representations: PAC-Bayes and Sample Compression Hypernetworks”. In: ICML. PMLR
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Definitions

Meta-Learning dataset

SSS := {S1, S2, . . . ,Sm} such that Si ∼
(
Di

)ni .
Meta-Learning algorithm

AAA(SSS) −→ (ϕ, ψ)

Encoder

Eϕ(S) −→ µµµ

Decoder

Dψ(µµµ) −→ θ

(Downstream) Predictor

hθ(x) −→ y
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PAC-Bayes Hypernetworks

Training objective.Each dataset Si ∈ SSS is split into a support set Ŝi and a query set T̂i =Si\Ŝi .

min
ψ,ϕ

{
1

m

m∑
i=1

E L̂T̂i
(hθi )

∣∣∣∣∣ θi=Dψ

(
µµµi+ϵϵϵ

)
; µµµi=Eϕ

(
Ŝi
)}
, with ϵϵϵ ∼ N (0, I).
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PAC-Bayes Hypernetworks

Bound computation. Given a new task sample S ′∼ (D′)n
′
, let µµµ = Eϕ(S

′) and θ′=Dψ(µµµ+ ϵϵϵ).

ELD′(hθ′) ≤ argsup
0≤p≤1

{
kl
(
E L̂S ′(hθ′), p

)
≤

1
2∥µµµ∥

2+ln2
√
n′

δ

n′

}
,

using a prior P0 = N (0, I) and a posterior Q = N (µµµ, I) over the latent representation space.
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Toy Experiments

θ = Dψ( [µ1, µ2]
T )
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MNIST pixel swap

Multiclass classification

Meta-train set: 10 tasks of 60 000 examples

Meta-test set: 20 tasks of 2000 examples

Image: Benjamin Leblanc & Claude

Algorithm
100 Pixels swap 200 Pixels swap 300 Pixels swap

Bound Test error Bound Test error Bound Test error
Pentina and Lampert (2014) 0.190 0.019 0.240 0.026 0.334 0.038
Amit and Meir (2018) 0.138 0.016 0.161 0.020 0.329 0.040
Guan and Lu (2022) 0.093 0.015 0.128 0.019 0.210 0.024
Zakerinia, Behjati, and Lampert (2024) 0.053 0.019 0.108 0.026 0.149 0.035
Our PAC-Bayes Hypernetwork 0.068 0.027 0.112 0.076 0.219 0.186
Opaque encoder 0.037 0.087 0.159
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MINIST and CIFAR100 Binary Pairs

Binary classification

Meta-train set: 56 tasks of 2000 examples for MNIST;
100 tasks of 1200 examples for CIFAR

Meta-test set: 34 tasks of 2000 examples for MNIST;
50 tasks of 200 examples for CIFAR

Algorithm
MNIST CIFAR100

Bound Test error Bound Test error
Pentina and Lampert (2014) 0.767 ± 0.001 0.369 ± 0.223 0.801 ± 0.001 0.490 ± 0.070
Amit and Meir (2018) 1372 ± 23.36 0.351 ± 0.212 950.9 ± 343.1 0.284 ± 0.120
Guan and Lu (2022) 0.754 ± 0.003 0.366 ± 0.221 0.802 ± 0.001 0.489 ± 0.073
Zakerinia, Behjati, and Lampert (2024) 0.684 ± 0.021 0.351 ± 0.212 0.953 ± 0.315 0.281 ± 0.125
Our PAC-Bayes Hypernetwork 0.597 ± 0.107 0.150 ± 0.114 0.974 ± 0.022 0.295 ± 0.103
Opaque encoder 0.497 ± 0.134 0.506 ± 0.101
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History

Inception: Littlestone and Warmuth (1986):“Relating Data Compression and Learnability”

The Set Covering Machine

Marchand and Shawe-Taylor (2002): “The Set Covering Machine”
Marchand and Sokolova (2005): “Learning with Decision Lists of Data-Dependent Features”
Laviolette, Marchand, and Shah (2005): “Margin-Sparsity Trade-Off for the Set Covering Machine”
Hussain et al. (2007): “Revised Loss Bounds for the Set Covering Machine and Sample-Compression Loss Bounds
for Imbalanced Data”
Drouin et al. (2019): “Interpretable genotype-to-phenotype classifiers with performance guarantees”

Pick-To-Learn
Campi and Garatti (2023): “Compression, Generalization and Learning”
Paccagnan, Campi, and Garatti (2023): “The Pick-to-Learn Algorithm: Empowering Compression for Tight
Generalization Bounds and Improved Post-training Performance”
Marks and Paccagnan (2025): “Pick-to-Learn and Self-Certified Gaussian Process Approximations”
Bazinet, Zantedeschi, and Germain (2025): “Sample Compression Unleashed: New Generalization Bounds for
Real Valued Losses”
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Definitions

A compressed predictor hµi is a data-dependant predictor encoded by two quantities

A compression set Si is a subset of the training set S :

i ∈ In := P({1, 2, . . . , n})

A message µ ∈ Mi contains additional information to describe the predictor hµi .

The message µ is chosen among a (discrete) set Mi of predefined messages given Si.
For simplicity, we sometime use a message set M that does not rely on Si.

Given Si ∈ Z |i| et µ ∈ Mi, a reconstruction function R outputs a predictor :

hµi = R(Si, µ) .
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A Classical Sample Compressed Classifiers

SVM: Support Vector Machine (hard margin)

Image: Wikipedia

The SVM’s learning algorithm acts as its own
reconstruction function

SVM(S) = hµi = SVM(Si)

with Si = {support vectors}
and µ = ∅
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Generalization Bounds for sample compressed binary classifiers

Given hµi : X → {−1,+1}, and L01
D(h

µ
i ) = E

(x ,y)∼D
I (hµi (x) ̸= y) the zero-one loss.

Theorem (Marchand and Sokolova 2005; Laviolette, Marchand, and Shah 2005)

Let R be a reconstruction function, PMi
a distribution over messages, and δ ∈ (0, 1]. With high

probability (≥ 1− δ) over S ∼ Dn, we have

∀i ∈ In, µ ∈ Mi :

L01
D(h

µ
i ) ≤ 1− exp

(
−1

n−|i|−kSic

[
ln

(
n−|i|
kSic

)
+ ln

(
n

|i|

)
+ln

(
1

PMi
(µ) · ξ(|i|) · δ

)])
where kSic := |ic |L̂01

Sic
(hµi ) is the error count on Sic := S \ Si and ξ(a) := 6

π2 (a+ 1)−2.
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New bound for real-valued losses

Assumption

The loss ℓ : H×Z → R is σ-sub-Gaussian, i.e., for all i ∈ In, µ ∈ Mi :

E
z∼D

eλ(ℓ(h
µ
i ,z)−LD(h

µ
i )) ≤ e

λ2σ2

2 , ∀λ ∈ R.

Theorem

Let R be a reconstruction function, PMi
a distribution over messages, and δ ∈ (0, 1]. With high

probability (≥ 1− δ) over S ∼ Dn, we have

∀i ∈ In, µ ∈ Mi :

LD(h
µ
i ) ≤ L̂Sic (h

µ
i ) +

1√
n − |i|

[
σ2

2
+ ln

(
n

|i|

)
+ln

(
1

PMi
(µ) · ξ(|i|) · δ

)]
.
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Proof idea. Each sample compressed classifier hµi is defined independently of Sic ∼ Dn−|i|.

For all i ∈ In, µ ∈ Mi and δi,µ ∈ (0, 1], with probability at least 1− δi,µ :

LD(h
µ
i )− L̂Sic

(hµi ) ≤ 1

t

[
ln

(
E

Sic∼Dn−|i|
et(LD (h

µ
i )−L̂Sic

(hµi ))

)
+ ln

1

δi,µ

]
⟨ Chernoff (t > 0) ⟩

=
1

t

ln
n−|i|∏

i=1

E
z∼D

e
t

n−|i| (ℓ(h
µ
i ,z)−L̂Sic

(hµi ))

+ ln
1

δi,µ


≤ 1

t

ln
n−|i|∏

i=1

e
t2σ2

2(n−|i|)2

+ ln
1

δi,µ

 ⟨ sub-Gaussian loss, with λ :=
t

n − |i|
⟩

=
1

t

[
t2σ2

2(n − |i|)
+ ln

1

δi,µ

]
.

The final result is obtained by choosing t :=
√
n − |i| and by an union bound over the (discrete)

set of all possible sample compress classifiers, with δi,µ = ξ(|i|)
( n
|i|)

· PMi
(µ) · δ, since

∑∞
i=1 ξ(i) = 1.
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Sample Compress Hypernetworks
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Toy Experiments
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New bound for continuous messages

PAC-Bayes to the rescue!

We now consider a posterior distribution QM over the (possibly continuous) message set M.

Theorem

Let R be a reconstruction function, PM a distribution over messages, and δ ∈ (0, 1]. With high
probability (≥ 1− δ) over S ∼ Dn, we have

∀i ∈ In,QM over M :

E
µ∼QM

LD(h
µ
i ) ≤ E

µ∼QM̂
LSic (h

µ
i ) +

1√
n − |i|

[
KL(QM∥PM) +

σ2

2
+ ln

(
n

|i|

)
+ln

(
1

ξ(|i|) · δ

)]
.

Proof idea. For a fixed i ∈ In, get a typical PAC-Bayes bound with prior/posterior distribution
over messages M. Then, use a union bound to get a bound uniformly valid over the
compression sets In.
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PAC-Bayes Sample Compress Hypernetworks

Pascal Germain (Université Laval) PAC-Bayesian Hypernetworks October 28, 2025 25 / 28



MNIST Binary Pairs
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Perspectives

Dynamically select the message/compression set size during learning;

Fine-tune large language models.
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