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Bayesian predictive inference
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[Fortini Petrone ’20, Fong et al. 23’, 
Berti et al. ’23, & others]

[pic: Fong et al. ’23]

• Notation:  and  the corresponding density 
•  may be tricky to elicit 
• The sequence of one step ahead   is often easier to elicit 
‣ e.g., via a  learning rule, i.e., a map   

Pn := P(Yn+1 |y1:n) pn
Yn+1:∞ ∼ P( ⋅ |y1:n)

(Pn)
(Pn−1, yn) ↦ Pn

Let  be a parameter of interestθ



Bootstrap/Predictive Resampling [Rubin’81, Fong et al. ’23]

Input:


• An estimator  
• A learning rule: i.e., a map  
• Data  
• B (#bootstrap samples) and N (#synthetic samples) 

Given , compute  

For  in 1 to B repeat 
For  in 1: N repeat 

- Sample synthetic data  

- Update the predictive  
Compute  

Output:  

̂θn = f(y1:n)
(Pn−1, yn) ↦ Pn

y1:n

y1:n Pn
j

i
Yn+i ∼ Pn+i−1

(Pn+i−1, yn+i) ↦ Pn+i
̂θ(i)
n+N = f(y1:n, yn+1:n+N)

̂θ(1)
n+N, …, ̂θ(B)

n+N

Predictive Resampling
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The mechanism that enables moving 
from prediction to posterior distribution

Freedom in the 
choice of which 
predictive to use



Examples
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Different proposals differ by how you define (Pn−1, yn) ↦ Pn

1.

1 −
1
n

+
1
n

Here, the update is a 
point mass. i.e. 
It’s the predictive of the 
Dirichlet Process 
[  Bayesian bootstrap]≈

Pn( ⋅ ) = (1 −
1
n ) Pn−1( ⋅ ) +

1
n

δYn
( ⋅ )

2. …

[Ferguson ’73, Rubin ’81]



Question 1 of the tutorial
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How to come up ?(Pn−1, yn) ↦ Pn

A.  is given by a Bayesian model [e.g., Dirichlet Process] 
‣ More interestingly, it “mimics” the predictive distribution of a Bayesian model 

[e.g. Dirichlet Process Mixtures] 
Today: Predictive Recursion, Gaussian Copula Algorithm 

B.  is new/almost fully new 
Today: Any-Copula Algorithm 

C.  is taken from (neighbouring) literature 
Today: Partition Estimators, Kernel methods, Parametric Boostrap

(Pn−1, yn) ↦ Pn

(Pn−1, yn) ↦ Pn

(Pn−1, yn) ↦ Pn



Question 2 of the tutorial
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Once we have , can we use it for predictive resampling?(Pn−1, yn) ↦ Pn

Two desiderata for the resulting : (recall that )

• “Valid”: the sequence of synthetic data  should satisfy some properties 
‣ We will require asymptotically exchangeable 

Today: -  is a martingale   is c.i.d. [Berti et al. ’04] (Trival for A., not B. C.) 
 -  is NOT a martingale  Beyond martingales (  is NOT  c.i.d.) 

• “Practical”: we need to be able to implement this algorithm

‣ We need to sample  quicky 
‣ We need to update  quickly 
‣ Other numerical properties that affect computations (grid? Order dependence? Etc.) 

Today: not so much, except focusing on recursive algorithm

(Pn) Yn ∼ Pn−1
(YN)N≥n

(Pn) → (Yn)
(Pn) → (Yn)

Yn+1 ∼ Pn
(Pn−1, yn) ↦ Pn



Constructing predictive recursion
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=
c

c + 1
G0(B) +

1
c + 1

P(θ1 ∈ B |Y1)

Dirichlet Process Mixtures (DPMs)
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Consider the mixture 
 

 
Yi |θi ∼ k( ⋅ |θi)
θi |G iid∼ G
G ∼ DP(cG0)

E(G(B) |Y1) = P(θ2 ∈ B |Y1) = G1(B)

= E(P(θ2 ∈ B |θ1) |Y1)

= E ( c
c + 1

G0(B) +
1

c + 1
1B(θ1) Y1)

• It mixes prior guess 
and an “update” 

• The update is where 
Bayes rule is used

• Case : suppose you are given a single data , 
the Bayes estimate of the mixing measure

n = 1 y1

=
∫

B
k(Yi |θ)G0(dθ)

p(Yi)

• Case : usually we approximate it!n > 2

Weights

[Lo ’84]
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Predictive Recursion (PR)
Algo. Start with a prior guess , choose a deterministic sequence , given  

for a set B repeat       

G0( ⋅ ) (αn) y1:n

Gi(B) = (1 − αi)Gi−1(B) + αi

∫
B

k(yi |θ)Gi−1(dθ)

pi−1(yi)

Update applying Bayes 
rule to a single obs. 

Best guess up to i − 1Weights

[Newton et al. ’98, Newton Zhang ’99]

Output:         Gn( ⋅ )
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Predictive Recursion (PR)
Algo. Start with a prior guess , choose a deterministic sequence , given  

repeat:                

g0(θ) (αn) y1:n

gi(θ) = (1 − αi)gi−1(θ) + αi
k(yi |θ)gi−1(θ)

pi−1(yi)

Update applying Bayes 
rule to a single obs. 

Best guess up to i − 1
• It is exact predictive when  
• It is not when  
• Some numerical considerations (order dependent, grid, numerical integration 

required,…) 
• As an estimator It can be every accurate [Newton ’02, Tokdar et al. ’09, Zuanetti et al. ’19, C. 

Walker, ’18, Dixit Martin ’24, … and many more]

n = 1
n > 1

Weights

[Newton et al. ’98, Newton Zhang ’99]

Output:         gn(θ)

• [Fortini Petrone ’20]: if taken as a predictive rule, it can be used for predictive inference
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Observables? What about if we want a predictive scheme for P

Algo. Start with a prior guess , choose a deterministic sequence , given 

 repeat:           

g0(θ) (αn)

y1:n gi(θ) = (1 − αi)gi−1(θ) + αi
k(Yi |θ)gi−1(dθ)

pi−1(Yi)

Then                     pn(y) = ∫θ
k(y |θ)gn(θ)dθ

• It is a valid predictive rule (satisfies the martingale property), it can be used for a 
resampling scheme [Fortini Petrone ’20] 

• Lots of numerical approximations involved 
• Somewhat convoluted way of getting to the sequence of (Pn)



Copula-based algorithms
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Copula characterization

pn(y)
pn−1(y)

=
∫ f(y |θ)f(yn |θ)πn−1(dθ)

pn−1(y)pn−1(yn)
= cn(Pn−1(y), Pn−1(yn)) .

Let  be the predictive density of  given pn(y) = ∫ f(y |θ)πn(dθ) Yn+1 y1:n

A way to update 
(Pn−1, yn) ↦ Pn

A.It depends only on the 
sample size 

B.It must converge to the 
independence copula 
(i.e. no update)

Example: Gaussian (unknown ) 
•  and  
•  

•

μ
f(y |θ) = N(y |θ,1) π(θ) = N(0,τ−1)
pn(y) = N(y |μn, σ2

n)
pn(y)

pn−1(y)
=

∫ N(y |θ,1)N(yn |θ,1)πn−1(dθ)
pn−1(y)pn−1(yn)

= cρn
(Pn−1(y), Pn−1(yn))

Gaussian copula density 
with ρn = (n + τ)−1

Copula density 
(  is the CDF)Pn−1(y)

[Hahn et al. ’18]
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Back to DPMs
Case : suppose you are given  n = 1 y1,

p1(y)
p0(y)

= (1 − w)1 + w
∫ N(y |θ, σ2)N(y1 |θ, σ2) dG0(θ)

p0(y)p0(y1)

&  is available 
in closed form

w

Copula densityGaussian 
Copula

Independence 
copula

It is a copula mixture!

p1(y) = (1 − w)p0(y) + wcρ1
(P0(y), P0(y1))p0(y)

• Similar to PR derivations 
• We can use weights to 

drive convergence to 
independence copula

p1(y) = (1 − w)p0(y) + w
∫ N(y |θ, σ2)N(y1 |θ, σ2) dG0(θ)

p0(y1)

 f(y |G) = ∫ N(y |θ, σ2) dG(θ) and G ∼ DP(c G0) .
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Gaussian copula algorithm
Algo. Start with a prior guess , choose a deterministic sequence , given 

 repeat:       
p0(y) (αn)

y1:n pi(y) = (1−αi)pi−1(y)+αipi−1(y)cρ(Pi−1(y), Pi−1(yi))

• Note,  drive the convergence the independence copula 
• We bypass the need to compute  and do numerical integration 
• It is exact predictive when  
• It is not when  
• Some numerical considerations (order dependent, grid, NO 

numerical integration required,…) 
• As an estimator It can be every accurate [Hahn et al. ’18, Fong et al. ’23]

αi
Gn

n = 1
n > 1

Same as PR

Output:         pn(y)

[Hahn et al. ’18]

• [Fong et al. ’23]: if taken as a predictive rule, it can be used for 
predictive inference
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Nothing special about location-DPM 
Let  Given f(y |G) = ∫ N(y |θ, σ2) dG(θ, σ2) and G ∼ DP(c G0) . y1,

p1(y)
p0(y)

= (1 − w)1 + w cρn,ν(P0(y), P1(y)) Student t copula density

Algo. Start with a prior guess , choose a deterministic sequence , given 
 repeat:       

p0(y) (αn)
y1:n pi(y) = (1−αi)pi−1(y)+αipi−1(y)cρ,ν(Pi−1(y), Pi−1(yi))

• If taken as a sequence of predictives, it defines a 
martingale 

• Same reasoning can be extended to more 
complex models 
‣ Multivariate/Regression [Fong et al. ’23] 
‣ DPM of Linear Regression [C. Walker ’25a] 

Intermediate “lessons”

• Starting from a Bayesian model, it 

is fairly easy to get a martingale 
• Practical algorithms 
• Can we avoid taking a Bayesian 

model as starting point?

Output:         pn(y)



Any-copula
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Algo. Start with a prior guess , choose a deterministic sequence , given 
 repeat:       

p0(y) (αn)
y1:n pi(y) = (1 − αi)pi−1(y) + αipi−1(y)cθ(Pi−1(y), Pi−1(yi))

• We did not start from a (known) Bayesian model 
• We chose a copula  and use the weights as before 
• Example: Gumbel copula [C. Walker ’25b]

cθ

−4 −2 0 2 4 6

ECDF & Gumbel

x

C
D
F

0.
0

0.
5

1.
0

−4 −2 0 2 4 6

Kernel & Gumbel

x

0.
0

0.
5

1.
0

Black: truth 
Green: kernel density estimator 
(Silverman’s rule) 
Red: Algo. With Gumbel Copula

Can we use it for 
predictive 
resampling?

Output:         pn(y)
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Validity: Martingale condition

𝔼(Pn+1(B) |Y1:n) = (1 − αn+1)Pn(B) + αn+1𝔼 (∫B
pn(y)cθ(Pn(y), Pn(Yn+1))dy Y1:n)

𝔼 (∫B
pn(y)cθ(Pn(y), Pn(Yn+1))dy Y1:n) = ∫ ∫B

pn(y)pn(yn+1)cθ(Pn(y), Pn(yn+1))dydyn+1

= ∫ ∫B
pn(y)pn(yn+1)

p(y, yn+1)
pn(y)pn(yn+1)

dydyn+1 = Pn(B)

• The resulting sequence is  is c.i.d. 
• The connection between copulas and c.i.d. sequences is deeper 

[Bissiri Walker ’25]

(Yn)

Copulas 
define a “valid”
(Pn−1, yn) ↦ Pn

• We can sample from copula-based predictive algorithms [Fong et 
al. ’23] 

• It is clearly very fast

 is 
“practical”
Yn+1 ∼ Pn



Beyond Bayesian models
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(Recursive) Partition estimator

[Gyorfi et al. 
’12,Ch. 4,25]

[Tukey ’47,’61, 
Colomb ’77,…]

Consider 
• : sequence of nested dyadic partitions of , with 

,  … 

• : the cell containing 

(𝒫n) [0,1]
𝒫0 = {A0 = [0,1]} 𝒫1 = {A1,0 = [0,1/2), A1,1 = [1/2,1]}
An(x) x

Recursive predictive scheme

 

 

… 

Y1 ∼ Unif(A0) := P0

Y2 |Y1 ∼
1
2

Unif(A0) +
1
2

Unif(A1(Y1)) := P1

Yn+1 |Y1:n ∼ (1 −
1
n ) Pn +

1
n

Unif(An(Yn)) := Pn+1

• Update  is “valid”:  is martingale. 
• It can be used for nonparametric regression etc. 
• Not sure how “practical” it is. (Definitely order dependent etc.)

(Pn−1, yn) ↦ Pn (Pn)

P0 P1
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(Recursive) Kernel estimator

[Gyorfi et al. 
’12,Ch. 5,25]

[Parzen ’62, Rosenblatt’56, 
Akaike ’54,…]

Consider 

• Kernel  such that  

• Bandwidth  with 

K : ℝ ↦ ℝ+ ∫ K(u)du = 1

(hn) hn → 0

Recursive predictive scheme

 

•                             (classical kernel estimator) 

•    (recursive kernel estimator)

Y1 ∼ K := P0

Yn+1 |Y1:n ∼ Pc
n with pc

n(x) =
1

nhn

n

∑
i=1

K ( x − Yi

hn )
Yn+1 |Y1:n ∼ Pr

n with pr
n(x) = (1 −

1
n ) Pr

n−1 +
1

nhn
K ( x − Yn

hn )
•  is a martingale if and only iff Kernel is Laplace with a specific scale [Thm1 West ’91] 
•  is not a martingale [Battiston & C. ’25]

(Pc
n)

(Pr
n)



Beyond Martingales
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Parameter updates
Several proposals [Holmes Walker ’23, Garelli et al. ’24, Fong Yiu ’24, Fortini Petrone ’25…] moved the 
recursive update to a parametric family. With appropriate initialization, repeat 

 
 

Yn+1 | ̂θn ∼ P ̂θn
̂θn = ̂θn−1 + ηn f( ̂θn−1, Yn, . . . )

Example [Holmes Walker ’23]: Gaussian 
•  
•  (sample mean)

Yn+1 ∼ N( ̂θn,1)
̂θn = Ȳn

Not a martingale!

Validity: Martingale condition
𝔼[Pn+1(B) |Y1:n] = 𝔼[N(B | Ȳn+1,1) |Y1:n] = ∫ ∫B

ϕ (y
n

n + 1
Ȳn +

1
n + 1

yn+1,1) ϕ (yn+1 Ȳn,1) dydyn+1

= N (B Ȳn,1 +
1

(n + 1)2 )

Is this “valid” update?
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What other options we have?
For a general sequence , if all we are trying to establish is that the 
resulting  sequence is asymptotic exchangeability, we need to show 
[Aldous ’85, Lemma 8.2] 

                

(Pn)
(Yn)

ℙ(ω ∈ Ω : Pn( ⋅ , ω) w→ F̃( ⋅ , ω)) = 1
[Aldous ’85]

• If  not a martingale, the c.i.d. property is lost 
• This makes establishing the above somewhat non-trivial, as we don’t even have this 

conditional identical distributed property 

(Pn)
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Convergence of parameters/moments

•  is martingale: Prove parameter convergence using martingales property, 
and then one is pratically done 
‣ Parametric Bayesian Boostrap [Holmes Walker ’23, Fong Yiu ’24] 
‣ Logistic regression (Sandra’s talk) [Fortini Petrone ’25]

( ̂θn)

• Convergence of sample mean and sample variance for non i.i.d. random 
variables appropriately constructed

‣ Predictive distributions driven by 1st and 2nd sample moments [Garelli et al. ’25]

Both approaches cover the Gaussian example and much more general examples
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Larger classes of a.s. weakly convergent r.m.s.
•  belongs to a class of random measures a.s. weakly convergent

‣ [Battiston & C. ’25] Informally, if   satisfies         

 and  a.s.

(Pn)
(Pn)

|P(Xn+2 ∈ B |Y1:n) − P(Xn+1 ∈ B |Y1:n) | ≤ ξn ∑ ξn < ∞

• The martingale property is acquired asymptotically 
• It covers the Gaussian example 
• It also covers recursive kernel estimators (not-order dependent in the data, 

no grid required, easy to sample) 
• Talk on YouTube - Post Bayes Workshop (same channel as the seminar 

series)



Discussion
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Discussion
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• We have reviewed several possible constructions of algorithms that can be used 
for these bootstrap-type schemes 
‣ They can come mimicking  update of existing Bayesian models 

(Predictive Recursion, Gaussian Copula,…) 
‣ They can be new (Any-copula, Predictive sequence driven by moments, SGD 

driven predictives,…) 
‣ They can be borrowed from other literature (Recursive Partion estimators,…) 

• We have discussed ways of checking their suitability for these schemes 
‣ “Valid” update (Martingale conditions, …) 
‣ “Practical” (Being able to sample from, fast update,…)

n = 1



Themes not touched
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• Which scheme to use? 
‣ For specific applications, it will depend on “suitability to the available data” 

[Garelli et al. ’24] 
‣ Still, maybe something can be done to understand the properties. I like a 

“forward -backward  view in [Fong Yiu ’24] 

• More practical ways of establishing validity 
‣ All approaches require some form of mathematical tractability

(n + 1 : ∞) (1 : n)

(Maybe simply because there is not enough 
out there)



Thanks
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