Recursive methods for predictive Bayes

Lorenzo Cappello

Post-Bayes Seminar Series - 01/07/2025

Bayesian predictive inference

[Fortini Petrone '20, Fong et al. 23', Berti et al. '23, & others]

Let heta be a parameter of interest

$$f_{\theta}(y), \pi(\theta) \xrightarrow{\longrightarrow} \pi(\theta \mid y_{1:n}) \xrightarrow{\text{posterior predictive}} p(y \mid y_{1:n})$$

$$f_{\theta}(y)\pi(\theta \mid y_{1:n}) \text{ d}\theta$$

$$\pi(\theta \mid y_{1:n}) \leftarrow \xrightarrow{\text{Doob's theorem}} p(y \mid y_{1:n}) \leftarrow p(y)$$

$$Y_{n+1:\infty} \sim p(\cdot \mid y_{1:n}) \qquad p(y \mid y_{1:n}) \leftarrow p(y)$$

$$\text{predictive update}$$

$$\text{[pic: Fong et al. '23]}$$

- Notation: $P_n := P(Y_{n+1} | y_{1:n})$ and p_n the corresponding density
- $Y_{n+1:\infty} \sim P(\cdot \mid y_{1:n})$ may be tricky to elicit
- The sequence of one step ahead (P_n) is often easier to elicit
 - e.g., via a learning rule, i.e., a map $(P_{n-1}, y_n) \mapsto P_n$

Predictive Resampling

The mechanism that enables moving from prediction to posterior distribution

Bootstrap/Predictive Resampling [Rubin'81, Fong et al. '23]

Input:

- An estimator $\hat{\theta}_n = f(y_{1:n})$
- A learning rule: i.e., a map $(P_{n-1}, y_n) \mapsto P_n$
- Data $y_{1:n}$
- B (#bootstrap samples) and N (#synthetic samples)

Given $y_{1:n}$, compute P_n

For *j* in 1 to B repeat

For i in 1: N repeat

- Sample synthetic data $Y_{n+i} \sim P_{n+i-1}$
- Update the predictive $(P_{n+i-1}, y_{n+i}) \mapsto P_{n+i}$

Freedom in the choice of which predictive to use

Compute
$$\hat{\theta}_{n+N}^{(i)} = f(y_{1:n}, y_{n+1:n+N})$$

Output: $\hat{\theta}_{n+N}^{(1)}, \dots, \hat{\theta}_{n+N}^{(B)}$

Examples

Different proposals differ by how you define $(P_{n-1}, y_n) \mapsto P_n$

1.
$$P_n(\,\cdot\,) = \left(1 - \frac{1}{n}\right) P_{n-1}(\,\cdot\,) + \frac{1}{n} \delta_{Y_n}(\,\cdot\,)$$

$$1 - \frac{1}{n} + \frac{1}{n}$$

Here, the update is a point mass. i.e. It's the predictive of the **Dirichlet Process**[≈ Bayesian bootstrap]

[Ferguson '73, Rubin '81]

2. ...

Question 1 of the tutorial

How to come up
$$(P_{n-1}, y_n) \mapsto P_n$$
?

- A. $(P_{n-1}, y_n) \mapsto P_n$ is given by a Bayesian model [e.g., Dirichlet Process]
 - ▶ More interestingly, it "mimics" the predictive distribution of a Bayesian model [e.g. Dirichlet Process Mixtures]

Today: Predictive Recursion, Gaussian Copula Algorithm

- B. $(P_{n-1}, y_n) \mapsto P_n$ is new/almost fully new Today: Any-Copula Algorithm
- C. $(P_{n-1}, y_n) \mapsto P_n$ is **taken from (neighbouring) literature**Today: Partition Estimators, Kernel methods, Parametric Boostrap

Question 2 of the tutorial

Once we have $(P_{n-1}, y_n) \mapsto P_n$, can we use it for predictive resampling?

Two desiderata for the resulting (P_n) : (recall that $Y_n \sim P_{n-1}$)

- "Valid": the sequence of synthetic data $(Y_N)_{N>n}$ should satisfy some properties
 - We will require asymptotically exchangeable

```
Today: - (P_n) is a martingale \rightarrow (Y_n) is c.i.d. [Berti et al. '04] (Trival for A., not B. C.)
```

- (P_n) is NOT a martingale o Beyond martingales $((Y_n)$ is NOT c.i.d.)
- "Practical": we need to be able to implement this algorithm
 - $\blacktriangleright \ \ \text{We need to sample} \ Y_{n+1} \sim P_n \ \text{quicky}$
 - We need to update $(P_{n-1}, y_n) \mapsto P_n$ quickly
 - Other numerical properties that affect computations (grid? Order dependence? Etc.)
 Today: not so much, except focusing on recursive algorithm

Constructing predictive recursion

Dirichlet Process Mixtures (DPMs)

• Case n=1: suppose you are given a single data y_1 , the Bayes estimate of the mixing measure

$$\begin{split} E(G(B) \,|\, Y_1) &= P(\theta_2 \in B \,|\, Y_1) = G_1(B) \\ &= E(P(\theta_2 \in B \,|\, \theta_1) \,|\, Y_1) \\ &= E\left(\frac{c}{c+1}G_0(B) + \frac{1}{c+1}\mathbf{1}_B(\theta_1) \,|\, Y_1\right) \\ &= \frac{c}{c+1}G_0(B) + \frac{1}{c+1}P(\theta_1 \in B \,|\, Y_1) \\ &\qquad \qquad \bigvee \text{eights} \end{split}$$

Consider the mixture

$$Y_{i} \mid \theta_{i} \sim k(\cdot \mid \theta_{i})$$
 $\theta_{i} \mid G \stackrel{iid}{\sim} G$
 $G \sim DP(cG_{0})$
[Lo '84]

- It mixes prior guess and an "update"
- The update is where Bayes rule is used

• Case n > 2: usually we approximate it!

Predictive Recursion (PR) [Newton et al. '98, Newton Zhang '99]

Algo. Start with a prior guess $G_0(\cdot)$, choose a deterministic sequence (α_n) , given $y_{1:n}$ for a set B repeat $G_i(B) = (1-\alpha_i)G_{i-1}(B) + \alpha_i \frac{\int_B k(y_i \mid \theta)G_{i-1}(d\theta)}{p_{i-1}(y_i)}$ Output: $G_n(\cdot)$ Weights Best guess up to i-1 Update applying Bayes rule to a single obs.

Predictive Recursion (PR) [Newton et al. '98, Newton Zhang '99]

Algo. Start with a prior guess $g_0(\theta)$, choose a deterministic sequence (α_n) , given $y_{1:n}$

repeat:

$$g_i(\theta) = (1 - \alpha_i)g_{i-1}(\theta) + \alpha_i \frac{k(y_i | \theta)g_{i-1}(\theta)}{p_{i-1}(y_i)}$$

Output: $g_n(\theta)$

Weights

Best guess up to i-1

Update applying Bayes rule to a single obs.

- It is exact predictive when n=1
- It is not when n > 1
- Some numerical considerations (**order dependent**, grid, numerical integration required,...)
- As an estimator It can be every accurate [Newton '02, Tokdar et al. '09, Zuanetti et al. '19, C. Walker, '18, Dixit Martin '24, ... and many more]
- [Fortini Petrone '20]: if taken as a predictive rule, it can be used for predictive inference

Observables? What about if we want a predictive scheme for P

Algo. Start with a prior guess $g_0(\theta)$, choose a deterministic sequence (α_n) , given

$$y_{1:n}$$
 repeat: $g_i(\theta) = (1 - \alpha_i)g_{i-1}(\theta) + \alpha_i \frac{k(Y_i | \theta)g_{i-1}(d\theta)}{p_{i-1}(Y_i)}$

Then
$$p_n(y) = \int_{\theta} k(y \,|\, \theta) g_n(\theta) d\theta$$

- It is a valid predictive rule (satisfies the martingale property), it can be used for a resampling scheme [Fortini Petrone '20]
- Lots of numerical approximations involved
- ullet Somewhat convoluted way of getting to the sequence of (P_n)

Copula-based algorithms

Copula characterization [Hahn et al. '18]

A way to update $(P_{n-1}, y_n) \mapsto P_n$

Let $p_n(y) = \int f(y \mid \theta) \pi_n(d\theta)$ be the predictive density of Y_{n+1} given $y_{1:n}$

$$\frac{p_n(y)}{p_{n-1}(y)} = \frac{\int f(y\,|\,\theta)f(y_n\,|\,\theta)\pi_{n-1}(d\theta)}{p_{n-1}(y)p_{n-1}(y_n)} = c_n\bigg(P_{n-1}(y),P_{n-1}(y_n)\bigg).$$
 A.It depends a sample size sample size Copula density (P_{n-1}(y) is the CDF) (i.e. no update

A.It depends only on the B.It must converge to the independence copula (i.e. no update)

Example: Gaussian (unknown μ)

•
$$f(y \mid \theta) = \mathbb{N}(y \mid \theta, 1)$$
 and $\pi(\theta) = \mathbb{N}(0, \tau^{-1})$

•
$$p_n(y) = N(y | \mu_n, \sigma_n^2)$$

• $\frac{p_n(y)}{p_{n-1}(y)} = \frac{\int N(y | \theta, 1) N(y_n | \theta, 1) \pi_{n-1}(d\theta)}{p_{n-1}(y) p_{n-1}(y_n)}$

Gaussian copula density with $\rho_n = (n + \tau)^{-1}$

Back to DPMs

$$f(y \mid G) = \int N(y \mid \theta, \sigma^2) dG(\theta)$$
 and $G \sim DP(c \mid G_0)$.

Case n=1: suppose you are given y_1 ,

$$p_1(y) = (1-w)p_0(y) + w \frac{\int N(y\,|\,\theta,\sigma^2)N(y_1\,|\,\theta,\sigma^2)\,dG_0(\theta)}{p_0(y_1)} \quad \text{$\stackrel{>}{=}$ w is available in closed form}$$

$$\frac{p_1(y)}{p_0(y)} = \underbrace{(1-w)1 + w \underbrace{\int N(y\,|\,\theta,\sigma^2)N(y_1\,|\,\theta,\sigma^2)\,dG_0(\theta)}_{p_0(y)p_0(y_1)}}_{\text{Independence}} \quad \underbrace{\begin{array}{c} \& w \text{ is available} \\ \text{in closed form} \end{array}}_{\text{Copula}}$$

It is a copula mixture!

$$p_1(y) = (1 - w)p_0(y) + wc_{\rho_1}(P_0(y), P_0(y_1))p_0(y)$$

- Similar to PR derivations
 We can use weights to drive convergence to independence copula

Gaussian copula algorithm [Hahn et al. '18]

Algo. Start with a prior guess $p_0(y)$, choose a deterministic sequence (α_n) , given

```
y_{1:n} repeat: p_i(y) = (1-\alpha_i)p_{i-1}(y) + \alpha_i p_{i-1}(y)c_{\rho}(P_{i-1}(y), P_{i-1}(y_i))
```

Output: $p_n(y)$

- Note, α_i drive the convergence the independence copula
- ullet We bypass the need to compute G_n and do numerical integration
- It is exact predictive when n=1
- It is not when n > 1
- Some numerical considerations (order dependent, grid, NO numerical integration required,...)
- As an estimator It can be every accurate [Hahn et al. '18, Fong et al. '23]
- [Fong et al. '23]: if taken as a **predictive rule**, it can be used for predictive inference

Same as PR

Nothing special about location-DPM

Let
$$f(y \mid G) = \int N(y \mid \theta, \sigma^2) \, dG(\theta, \sigma^2)$$
 and $G \sim DP(c \mid G_0)$. Given y_1 ,
$$\frac{p_1(y)}{p_0(y)} = (1-w)1 + w \frac{c_{\rho_n,\nu}(P_0(y), P_1(y))}{c_{\rho_n,\nu}(P_0(y), P_1(y))}$$
 Student t copula density

Algo. Start with a prior guess $p_0(y)$, choose a deterministic sequence (α_n) , given

$$y_{1:n}$$
 repeat: $p_i(y) = (1 - \alpha_i)p_{i-1}(y) + \alpha_i p_{i-1}(y)c_{\rho,\nu}(P_{i-1}(y), P_{i-1}(y))$

Output: $p_n(y)$

- If taken as a sequence of predictives, it defines a Intermediate "lessons" martingale
- Same reasoning can be extended to more complex models
 - Multivariate/Regression [Fong et al. '23]
 - DPM of Linear Regression [C. Walker '25a]

- Starting from a Bayesian model, it is fairly easy to get a martingale
- Practical algorithms
- Can we avoid taking a Bayesian model as starting point?

Any-copula

Algo. Start with a prior guess $p_0(y)$, choose a deterministic sequence (α_n) , given

 $y_{1:n}$ repeat: $p_i(y) = (1 - \alpha_i)p_{i-1}(y) + \alpha_i p_{i-1}(y)c_{\theta}(P_{i-1}(y), P_{i-1}(y))$

Output: $p_n(y)$

- We did not start from a (known) Bayesian model
- We chose a copula c_{θ} and use the weights as before
- Example: Gumbel copula [C. Walker '25b]

Black: truth

Green: kernel density estimator

(Silverman's rule)

Red: Algo. With Gumbel Copula

Can we use it for predictive resampling?

Validity: Martingale condition

$$\mathbb{E}(P_{n+1}(B) \mid Y_{1:n}) = (1 - \alpha_{n+1})P_n(B) + \alpha_{n+1}\mathbb{E}\left(\int_B p_n(y)c_{\theta}(P_n(y), P_n(Y_{n+1}))dy \mid Y_{1:n}\right)$$

$$\mathbb{E}\left(\int_{B} p_{n}(y)c_{\theta}(P_{n}(y), P_{n}(Y_{n+1}))dy \, \bigg| \, Y_{1:n}\right) = \iint_{B} p_{n}(y)p_{n}(y_{n+1})c_{\theta}(P_{n}(y), P_{n}(y_{n+1}))dydy_{n+1}$$

$$= \iint_{B} p_{n}(y)p_{n}(y_{n+1}) \frac{p(y, y_{n+1})}{p_{n}(y)p_{n}(y_{n+1})} dydy_{n+1} = P_{n}(B)$$
Copulas define a "valid" $(P_{n-1}, y_{n}) \mapsto P_{n}$

- The resulting sequence is (Y_n) is c.i.d.
- The connection between copulas and c.i.d. sequences is deeper [Bissiri Walker '25]
- We can sample from copula-based predictive algorithms [Fong et al. '23]
- It is clearly very fast

'practical"

Beyond Bayesian models

(Recursive) Partition estimator [Tukey '47,'61, Colomb '77,...

Consider

• (\mathcal{P}_n) : sequence of nested dyadic partitions of [0,1], with

$$\mathcal{P}_0 = \{A_0 = [0,1]\}, \mathcal{P}_1 = \{A_{1,0} = [0,1/2), A_{1,1} = [1/2,1]\} \dots$$

• $A_n(x)$: the cell containing x

Recursive predictive scheme

$$\begin{split} Y_1 &\sim \text{Unif}(A_0) := P_0 \\ Y_2 \mid Y_1 &\sim \frac{1}{2} \text{Unif}(A_0) + \frac{1}{2} \text{Unif}(A_1(Y_1)) := P_1 \end{split}$$

. . .

$$|Y_{n+1}||Y_{1:n} \sim \left(1 - \frac{1}{n}\right)P_n + \frac{1}{n} \cup \text{nif}(A_n(Y_n)) := P_{n+1}$$

[Gyorfi et al. '12,Ch. 4,25]

- Update $(P_{n-1}, y_n) \mapsto P_n$ is "valid": (P_n) is martingale.
- It can be used for nonparametric regression etc.
- Not sure how "practical" it is. (Definitely order dependent etc.)

(Recursive) Kernel estimator [Parzen '62, Rosenblatt'56, Akaike '54,...]

Consider

- Kernel $K: \mathbb{R} \to \mathbb{R}^+$ such that K(u)du = 1
- Bandwidth (h_n) with $h_n \to 0$

A Distribution-Free Theory of Nonparametric Regression

Adam Krzyżak Harro Walk

[Gyorfi et al. '12,Ch. 5,25]

$$Y_1 \sim K := P_0$$

Recursive predictive scheme
$$Y_1 \sim K := P_0$$

$$Y_{n+1} \mid Y_{1:n} \sim P_n^c \text{ with } p_n^c(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x-Y_i}{h_n}\right)$$

(classical kernel estimator)

$$Y_{n+1} \mid Y_{1:n} \sim P_n^r \text{ with } p_n^r(x) = \left(1 - \frac{1}{n}\right) P_{n-1}^r + \frac{1}{nh_n} K\left(\frac{x - Y_n}{h_n}\right) \text{ (recursive kernel estimator)}$$

- (P_n^c) is a martingale if and only iff Kernel is Laplace with a specific scale [Thm1 West '91]
- (P_n^r) is not a martingale [Battiston & C. '25]

Beyond Martingales

Parameter updates

Several proposals [Holmes Walker '23, Garelli et al. '24, Fong Yiu '24, Fortini Petrone '25...] moved the recursive update to a parametric family. With appropriate initialization, repeat

$$Y_{n+1} | \hat{\theta}_n \sim P_{\hat{\theta}_n}$$

$$\hat{\theta}_n = \hat{\theta}_{n-1} + \eta_n f(\hat{\theta}_{n-1}, Y_n, \dots)$$

Example [Holmes Walker '23]: Gaussian

• $Y_{n+1} \sim \mathbb{N}(\hat{\theta}_n, 1)$

Is this "valid" update?

• $\hat{\theta}_n = \bar{Y}_n$ (sample mean)

Validity: Martingale condition

$$\mathbb{E}[P_{n+1}(B) \mid Y_{1:n}] = \mathbb{E}[\mathbb{N}(B \mid \bar{Y}_{n+1}, 1) \mid Y_{1:n}] = \iint_{B} \phi \left(y \left| \frac{n}{n+1} \bar{Y}_{n} + \frac{1}{n+1} y_{n+1}, 1 \right. \right) \phi \left(y_{n+1} \left| \bar{Y}_{n}, 1 \right. \right) dy dy_{n+1}$$

$$= \mathbb{N} \left(B \left| \bar{Y}_{n}, 1 + \frac{1}{(n+1)^{2}} \right. \right)$$
Not a martingale!

What other options we have?

For a general sequence (P_n) , if all we are trying to establish is that the resulting (Y_n) sequence is **asymptotic exchangeability**, we need to show [Aldous '85, Lemma 8.2]

$$\mathbb{P}(\omega \in \Omega : P_n(\,\cdot\,,\omega) \xrightarrow{w} \tilde{F}(\,\cdot\,,\omega)) = 1$$

[Aldous '85]

- If (P_n) not a martingale, the c.i.d. property is lost
- This makes establishing the above somewhat non-trivial, as we don't even have this conditional identical distributed property

Convergence of parameters/moments

- $(\hat{\theta}_n)$ is martingale: Prove parameter convergence using martingales property, and then one is pratically done
 - Parametric Bayesian Boostrap [Holmes Walker '23, Fong Yiu '24]
 - Logistic regression (Sandra's talk) [Fortini Petrone '25]

- Convergence of sample mean and sample variance for non i.i.d. random variables appropriately constructed
 - Predictive distributions driven by 1st and 2nd sample moments [Garelli et al. '25]

Both approaches cover the Gaussian example and much more general examples

Larger classes of a.s. weakly convergent r.m.s.

- ullet (P_n) belongs to a class of random measures a.s. weakly convergent
 - ▶ [Battiston & C. '25] Informally, if (P_n) satisfies $|P(X_{n+2} \in B \mid Y_{1:n}) P(X_{n+1} \in B \mid Y_{1:n})| \le \xi_n \text{ and } \sum \xi_n < \infty \text{ a.s.}$
 - The martingale property is acquired asymptotically
 - It covers the Gaussian example
 - It also covers recursive kernel estimators (not-order dependent in the data, no grid required, easy to sample)
 - Talk on YouTube Post Bayes Workshop (same channel as the seminar series)

Discussion

Discussion

- We have reviewed several possible constructions of algorithms that can be used for these bootstrap-type schemes
 - They can come mimicking n=1 update of existing Bayesian models (Predictive Recursion, Gaussian Copula,...)
 - ▶ They can be new (Any-copula, Predictive sequence driven by moments, SGD driven predictives,...)
 - They can be borrowed from other literature (Recursive Partion estimators,...)
- We have discussed ways of checking their suitability for these schemes
 - "Valid" update (Martingale conditions, ...)
 - "Practical" (Being able to sample from, fast update,...)

Themes not touched

(Maybe simply because there is not enough out there)

- Which scheme to use?
 - For specific applications, it will depend on "suitability to the available data" [Garelli et al. '24]
 - Still, maybe something can be done to understand the properties. I like a "forward $(n+1:\infty)$ -backward (1:n) view in [Fong Yiu '24]
- More practical ways of establishing validity
 - All approaches require some form of mathematical tractability

Thanks

lorenzo.cappello@upf.edu comments welcome!

Funding:

- Ramon y Cajal (Ministerioo de cienca, innovacion y universidades) (RYC2022-038467-I)
- Spanish Ministry of Economy and Competitiveness grant PID2022-138268NB-I00

References (In the order at which they appeared)

- Fortini, S., S. Petrone, et al. (2020). Quasi-Bayes properties of a procedure for sequential learning in mixture models. Journal of the Royal Statistical Society Series B 82(4), 1087–1114.
- Fong, E., C. Holmes, and S. G. Walker (2023). Martingale posterior distributions. Journal of the Royal Statistical Society Series B 85(5), 1357—-1391.
- Berti, P., Dreassi, E., Pratelli, L. & Rigo, P. (2021). A class of models for Bayesian predictive inference. Bernouilli, 27, 702–726.
- Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9(1), 130–134.
- Newton, M. A., Zhang, Y., & Régnier, D. (1998). Nonparametric Bayes methods using predictive updating. In J. M. Bernardo et al. (Eds.), Bayesian Statistics 6 (pp. 651–660). Oxford University Press.
- Newton, M. A., & Zhang, Y. (1999). A recursive algorithm for nonparametric Bayes classification. Biometrika, 86(2), 239–249.
- Newton, M. A. (2002). On a nonparametric recursive estimator of the mixing distribution. Sankhyā: The Indian Journal of Statistics, Series A, 64, 306–322.
- Tokdar, S. T., Martin, R., & Ghosh, J. K. (2009). Consistency of a recursive estimate of mixing distributions. The Annals of Statistics, 37(5B), 2502–2522.
- Zuanetti, D.A., M'uller, P., Zhu, Y., Yang, S., Ji, Y.: Bayesian nonparametric clustering for large data sets. Statistics and Computing 29, 203–215 (2019)
- Cappello. Walker (2018). A Bayesian motivated Laplace inversion for multivariate probability distributions. Methodology and Computing in Applied Probability
- Dixit, V., & Martin, R. (2023). Revisiting consistency of a recursive estimator of mixing distributions. *Electronic Journal of Statistics*, 17(1), 1007-1042.

31

References (In the order at which they appeared)

- Hahn, P.R., Martin, R., Walker, S.G. (2018 On recursive predictive distributions. Journal of the American Statistical Association 113, 1085–1093
- Cappello, L, Walker, S.G. (2025a). Recursive nonparametric predictive of a regression model.
- Cappello, L, Walker, S.G. (2025b). Recursive estimation of probability distributions
- Bissiri, P. G., & Walker, S. G. (2025). Bayesian analysis with conditionally identically distributed sequences. *Electronic Journal of Statistics*, 19(1), 1609-1632.
- Tukey, J. W. (1947). Non-parametric estimation II. Comparison of distributions. Annals of Mathematical Statistics, 18(4), 501–507.
 - Tukey, J. W. (1961). Curves as parameters, and touch estimation. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability.
- Györfi, L., Kohler, M., Krzyżak, A., & Walk, H. (2012). A distribution-free theory of nonparametric regression. Springer Science & Business Media.
- Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.
- Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27(3), 832–837.
- Akaike, H. (1954). An approximation to the density function. Annals of the Institute of Statistical Mathematics, 6, 127–132.
- West, M. (1991). Kernel density estimation and marginalization consistency. Biometrika 78(2), 421-425.

References (In the order at which they appeared)

- Battiston, M., Cappello, L. (2025) New (and old) predictive schemes with a.c.i.d. sequences
- Holmes, C. C. and S. G. Walker (2023). Statistical inference with exchangeability and martingales. Philosophical Transactions of the Royal Society A 381(2247), 20220143.
- Garelli, S., F. Leisen, L. Pratelli, and P. Rigo (2024). Asymptotics of predictive distributions driven by sample means and variances. arXiv preprint arXiv:2403.16828.
- Fong, E. and A. Yiu (2024). Asymptotics for parametric martingale posteriors. arXiv preprint arXiv:2410.17692.
- Fortini, S. and S. Petrone (2025). Exchangeability, prediction and predictive modeling in bayesian statistics. Statistical Science 40(1), 40–67.