When: every 2 weeks @ Tuesday either 9:00 or 14:00 GMT

Structure:

Chapter 1: Generalised Bayes (11/02–22/04)

Chapter 2: Predictive Bayes (06/05-15/07)

Chapter 3: PAC-Bayes (after the summer break)

Organisers:

Prof. Pierre Alquier (ESSEC Singapore)

Prof. Jeremias Knoblauch

Yann McLatchie (UCL)

Matias Altamirano (UCL)

Important Links

At a glance/website:
Where to subscribe to mailing list:
Where to subscribe to calendar:
Where to attend the seminars:
Where recorded seminars are stored:
Where to register for the workshop:

https://tinyurl.com/postBayesWebsite https://tinyurl.com/postBayesSubscribe https://tinyurl.com/postBayesCalendar https://tinyurl.com/postBayesZoom https://tinyurl.com/postBayesYT https://tinyurl.com/postBayesWorkshop

Please share widely!:)

Satellite Workshop @ BayesComp 2025:

Bayesian Computation and Inference with Misspecified Models

François-Xavier Briol (UCL)

Jack Jewson (Monash University)

Jeremias Knoblauch (UCL)

https://postbayes.github.io/BayesMisspecificationSatellite/

Questions / Comments during talks

During talk:

- use Q/A function in zoom
- Other questions can be upvoted
- We will try to monitor questions and ask relevant ones in natural breaks

After talk:

- Raise your hand in zoom
- We will do our best to decide who gets to ask a question fairly
- We will do our best to resolve remaining questions in Q / A function

Problematic Assumptions for Bayesian Analysis

1

- 1) model well-specified
 - computationally feasible

- (A1) $x_{1:n} \sim p(x_{1:n} \mid \theta^*)$ for some $\theta^* \in \Theta$
 - Θ = Only relevant State of the world
- (A2) $\pi(\theta)$ = uncertainty about the true State of the world

How rational decision-makers choose the prior

(A3) $\pi_n(\theta \mid x_{1:n})$ computable in practice

Problematic Assumptions for Bayesian Analysis

- A1) model well-specified
- (A2) prior well-specified
- (A3) computationally feasible

- (A1) $x_{1:n} \sim p(x_{1:n} \mid \theta^*)$ for some
 - $\Theta = Only relevant State of the World$
- (A2) $h(\theta) = \text{m(a)} \text{ tan ty a) cut the true state of the world}$ The radional decision-makers choose the prior
- (A3) $\pi_n(P \mid x_{1:n})$ computable in practice Guarantees real-world relevance

Optimisation-centric posteriors / Generalised Variational Inference $q_n^*(\theta) = \arg\min_{q \in \mathcal{Q}} \left\{ \mathscr{L}(q, x_{1:n}) \right. + \left. \mathsf{D}(q, \pi) \right\};$

Gibbs/Generalised/ Pseudo Posterior

(A2), (A3)

$$\pi_n^{\perp}(\theta \mid x_{1:n}) = \frac{\exp\{-L(x_{1:n}, p_{\theta})\} \cdot \pi(\theta)}{\int \exp\{-L(x_{1:n}, p_{\theta})\} \cdot \pi(\theta) d\theta}$$

Chapter 1

Generalised Bayes (11/02-22/04)

Prof. Jeremias Knoblauch (UCL)

Power/Fractional/ Cold Posterior , (A2), (A3) $\pi_n^{(\lambda)}(\theta \mid x_{1:n}) = \frac{p(x_{1:n} \mid \theta)^{\lambda} \cdot \pi(\theta)}{\left[p(x_{1:n} \mid \theta)^{\lambda} \cdot \pi(\theta) d\theta\right]}$

es' Posterior (A1), (A

 $O \mid x_{1:n}) = \frac{p(x_{1:n} \mid \theta) \cdot \pi(\theta)}{\int p(x_{1:n} \mid \theta) \cdot \pi(\theta)}$

Martingale posteriors & resampling-based approaches

For
$$i = 1,2,...$$

 $X_{n+i+1} \sim p(X_{n+i} \mid x_{1:n}, X_{n+1:n+i})$

$$\begin{split} & X_{n+i+1} \sim p(X_{n+i} \mid x_{1:n}, X_{n+1:n+i}) \\ & \theta^{\infty} = \operatorname{argmin}_{\theta \in \Theta} \mathsf{L}\left([x_{1:n}, X_{n+1:\infty}], \theta\right) \end{split}$$

Chapter 2

Predictive Bayes (06/05 - 15/07)

Dr. Edwin Fong (HKU)

Optimisation-centric posteriors / Generalised Variational Inference $q_n^*(\theta) = \arg\min_{q \in \mathcal{Q}} \left\{ \mathcal{L}(q, x_{1:n}) \right. + D(q, \pi) \right\};$

Gibbs/Generalised/ Pseudo Posterior

(A2), (A3)

$$\pi_n^{\perp}(\theta \mid x_{1:n}) = \frac{\exp\{- \bot (x_{1:n}, p_{\theta})\} \cdot \pi(\theta)}{\int \exp\{- \bot (x_{1:n}, p_{\theta})\} \cdot \pi(\theta) d\theta}$$

Chapter 3 PAC-Bayes (after summer break)

Prof. Pierre Alquier (ESSEC Singapore)

 $\int \int \pi_n(\theta \mid x_{1:n}) = \frac{1}{\int p(x_{1:n} \mid \theta) \cdot \pi(\theta) d\theta}$

Structure of Chapter 2

20/05: Theoretical foundations of predictive Bayes (Prof. Sandra Fortini)

03/06: Predictive model selection and uncertainty (Vik Shirvaikar)

01/07: Recursive methods for predictive Bayes (Prof. Lorenzo Cappello)

15/07: Applications of post-Bayesian methods (Dr. Harita Dellaporta + Matias Altamirano)

05/07

Chapter 2: Predictive Bayes Introduction and Overview

Edwin Fong

The University of Hong Kong

Post-Bayes Seminar 2025

- Introduction
 - Predictive Bayes in a nutshell
 - History of predictive Bayes
 - Predictive resampling
 - A parametric example
- 2 The predictive Bayes framework
- Bayesian bootstrap
- 4 Predictive models
- 5 Conclusions

Traditional Bayes in a Nutshell

The traditional Bayesian specifies the sampling density/likelihood $p(y \mid \theta)$ and the prior $\pi(\theta)$ as their model.

Given observations $y_{1:n}$, the Bayesian obtains:

1 The posterior for **parameter inference**:

$$\pi(\theta \mid y_{1:n}) \propto \prod_{i=1}^n p(y_i \mid \theta) \pi(\theta)$$

The marginal likelihood for model selection:

$$p(y_{1:n}) = \int \prod_{i=1}^{n} p(y_i \mid \theta) \, \pi(\theta) \, d\theta$$

The posterior predictive density for prediction:

$$p(y_{n+1} | y_{1:n}) = \int p(y_{n+1} | \theta) \pi(\theta | y_{1:n}) d\theta.$$

Predictive Bayes in a Nutshell

The predictive Bayesian *reverses* the order, and directly specifies the predictive density $p(y_{n+1} | y_{1:n})$ as their model.

Given observations $y_{1:n}$, the predictive Bayesian obtains:

1 The posterior for **parameter inference**:

$$Y_{n+1:\infty} \sim \prod_{i=n+1}^{\infty} p(y_i \mid y_{1:i-1}), \quad \theta = \theta(Y_{n+1:\infty})$$

The marginal likelihood for model selection:

$$p(y_{1:n}) = \prod_{i=1}^{n} p(y_i \mid y_{1:i-1})$$

3 The implicit likelihood $p(y \mid \theta)$ and prior $\pi(\theta)$ (sometimes)

Predictive Bayes in a Nutshell

Why is working with the predictive $p(y_{n+1} | y_{1:n})$ directly desirable?

- We have gotten pretty good at eliciting predictive distributions $p(y_{n+1} | y_{1:n})$, e.g. with machine learning.
- **②** Predictive statements can be validated as data y is actually observed, unlike probability statements on θ (like the prior).
- Sometimes the computation required for posterior inference can be much more expedient with the predictive approach.

Some History on Predictive Bayes

Predictive Bayes has a long history, dating all the way back to de Finetti.

BRUNO DE FINETTI

Foresight: Its Logical Laws, Its Subjective Sources (1937)

De Finetti's Representation Theorem: An infinitely exchangeable binary sequence $Y_i \in \{0,1\}$ has the representation

$$\rho(Y_1,\ldots,Y_N) = \int_0^1 \left[\prod_{i=1}^N \theta^{Y_i} (1-\theta)^{1-Y_i} \right] \pi(\theta) \ d\theta$$

Some History on Predictive Bayes

Furthermore, we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N Y_i = \Theta$$

where $\Theta \sim \pi$. De Finetti identified that the parameter Θ and the prior π can be written as a function of only binary exchangeable observables!

An insightful excerpt from [Bernardo and Smith, 2009, Chapter 4.9]:

$$\lim_{(n-m)\to\infty}P\left(\frac{y_{n-m}}{(n-m)}\leq\theta\bigg|x_1,\ldots,x_m\right)=Q(\theta\,|\,x_1,\ldots,x_m).$$

Thus, a posterior distribution for a parameter is seen to be a limiting case of a posterior (conditional) predictive distribution for an observable.

Some History on Predictive Bayes

20/05

Other well-known proponents of the predictive approach include Phil Dawid [Dawid, 1984], who coined the **prequential** approach, and Seymour Geisser [Geisser, 1993].

There has been a recent resurgence in interest of the predictive approach:

JOURNAL ARTICLE

Quasi-Bayes Properties of a Procedure for Sequential Learning in Mixture Models @

Sandra Fortini , Sonia Petrone 🖾

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 82, Issue 4, September 2020, Pages 1087–1114, https://doi.org/10.1111/rssb.12385

Published: 29 June 2020 Article history ▼

February 2021

A class of models for Bayesian predictive inference

Patrizia Berti, Emanuela Dreassi, Luca Pratelli, Pietro Rigo

Bernoulli 27(1): 702-726 (February 2021). DOI: 10.3150/20-BEJ1255

JOURNAL ARTICLE

Martingale posterior distributions 3

Edwin Fong , Chris Holmes 🚾 , Stephen G Walker 💎 Author Notes

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 85, Issue 5, November 2023, Pages 1357–1391, https://doi.org/10.1093/irsssb/qkad005

5, November 2023, Pages 1357–1391, https://doi.org/10.1093/jfsssb/qkadd

Published: 02 February 2024 Article history ▼

Bayesian Uncertainty

Statistical uncertainty arises as only a finite sample $y_{1:n}$ is observed. Given the entire population $y_{1:\infty}$, the parameter $\theta_{\infty}=\theta(y_{1:\infty})$ would be known precisely.

We argue that the source of Bayesian uncertainty is precisely the unobserved remainder of the population, $y_{n+1:\infty}$.

Given $Y_{1:n} = y_{1:n}$, we view Bayesian posterior sampling as:

- **1** Impute the population: $Y_{n+1:\infty} \sim p(y_{n+1:\infty} \mid y_{1:n})$
- **2** Compute the parameter: $\theta_{\infty} = \theta(Y_{1:\infty})$

Doob's consistency theorem [Doob, 1949] shows that $\theta_{\infty} \sim \pi(\theta \mid y_{1:n})$. The Bayesian imputes what they need to know the parameter.

Posterior Sampling

Table 1: Observed Sample Unit Α В 5 10 8 n = 26 10 ? ? ? 3 ? 4 Ν

Table 2: Imputed Population 1 Unit В 10 5 8 6 10 3 12 4 20 12 12 18 Ν 19 15 12

ole 3: Im	pute	d Po	pulat	ion	2
Unit	Α	В	С	-	
1	10	5	8	•	
2	6	7	10		
3	6	18	13		
4	10	9	21		
:	:	:	:		
Ν	15	12	16		

Imputation with Predictive Resampling

Denoting $p_i = p(y_{i+1} \mid y_{1:i})$, we have the sequential imputation algorithm to draw from $p(y_{n+1:N} \mid y_{1:n}) = \prod_{i=n+1}^{N} p(y_i \mid y_{1:i-1})$:

Algorithm 1: Predictive Resampling (PR)

```
Compute p_n from the observed data y_{1:n} N > n is a large integer for j \leftarrow 1 to B do for i \leftarrow n+1 to N do Sample Y_i \sim p_{i-1} Update p_i \hookleftarrow \{p_{i-1}, Y_i\} end Evaluate \theta_N^{(j)} = \theta(Y_{1:N}) end
```

Parametric Example

Example

Let $f_{\theta}(y) = \mathcal{N}(y \mid \theta, 1)$, with $\pi(\theta) = \mathcal{N}(\theta \mid 0, 1)$. The posterior density takes the form $\pi(\theta \mid y_{1:n}) = \mathcal{N}(\theta \mid \bar{\theta}_n, \bar{\sigma}_n^2)$ where

$$\bar{\theta}_n = \frac{\sum_{i=1}^n y_i}{n+1}, \quad \bar{\sigma}_n^2 = \frac{1}{n+1}.$$

The posterior predictive density is then

$$p(y_{n+1} \mid y_{1:n}) = \mathcal{N}(y_{n+1} \mid \bar{\theta}_n, 1 + \bar{\sigma}_n^2).$$

Predictive resampling (PR):

- **1** Draw $y_{n+1} \sim \mathcal{N}(y_{n+1} \mid \bar{\theta}_n, 1 + \bar{\sigma}_n^2)$
- **2** Update $\bar{\theta}_{n+1} = \sum_{i=1}^{n+1} y_i/(n+2)$, $\bar{\sigma}_{n+1}^2 = 1/(n+2)$
- Repeat until N

Parametric Example

Example

We generated $y_{1:n} \stackrel{\text{iid}}{\sim} \mathcal{N}(y \mid \theta = 2, 1)$ for n = 10, giving $\bar{\theta}_n = 1.84$.

Doob's theorem: distribution of $\bar{\theta}_N$ is approximately $\pi(\theta \mid y_{1:n})$.

Figure 1: (a) Sample paths of $\bar{\theta}_{n+i}$ through forward sampling; (b) Kernel density estimate of $\bar{\theta}_N$ samples (——) and analytical posterior density $\pi(\theta \mid y_{1:n})$ (- - -)

- Introduction
- The predictive Bayes framework
 - Martingale posteriors
 - Parameters
 - Theoretical foundations
 - Model evaluation
- 3 Bayesian bootstrap
- Predictive models
- 5 Conclusions

Martingale Posterior: A Predictive Framework

Consider more general $\{p(y_i \mid y_{1:i-1})\}_{i=n+1,n+2,...}$ and $\theta_{\infty} = \theta(Y_{1:\infty})$. No need for likelihood/prior, but predictives must satisfy a *martingale* condition.

Step 1: Predictive resampling

▶ Sequentially draw $Y_{n+1} \sim p(y_{n+1} \mid y_{1:n})$, $Y_{n+2} \sim p(y_{n+2} \mid y_{1:n+1})$, ... until we have $Y_{1:\infty}$, noting $Y_{1:n} = y_{1:n}$ is fixed.

Step 2: Recover parameter of interest

► Compute parameter of interest:

$$\theta_{\infty} = \theta(Y_{1:\infty}),$$

e.g. the mean or median of $Y_{1:\infty}$.

We call the distribution of θ_{∞} the martingale posterior.

Parameter of Interest

For $y_{1:n} \stackrel{\text{iid}}{\sim} F_0$, a more general parameter of interest is defined:

$$\theta(F_0) = \underset{\theta}{\operatorname{arg\,min}} \int \ell(\theta, y) dF_0(y)$$

- ► For example, $\ell(\theta, y) = |y \theta|$ gives the median and $(y \theta)^2$ gives the mean.
- ▶ For model fitting, let $\ell(\theta, y) = -\log f_{\theta}(y)$, where f_{θ} is the likelihood or pseudolikelihood

Martingale Posterior Distributions

To summarize:

1 Impute $Y_{n+1:\infty}$ from joint predictive:

$$p(y_{n+1:\infty} \mid y_{1:n}) = \prod_{i=n+1}^{\infty} p(y_i \mid y_{1:i-1})$$

2 Compute $\theta_{\infty} = \theta(Y_{1:\infty})$

Choice of predictive $p(y_{n+1} \mid y_{1:n})$:

- ► Posterior predictive: Bayesian posterior
- ► Empirical distribution: Bayesian bootstrap
- ► General predictive distribution: martingale posterior
 - ▶ Usually required to satisfy a martingale condition
 - ▶ We will cover a few parametric/nonparametric examples later in this talk!

Theoretical Foundations

20/05

Our sequence of predictive distributions $p(y_i \mid y_{1:i-1})$ should not be chosen arbitrarily. What conditions should the predictive distribution satisfy?

A martingale condition* is required in [Berti et al., 2020], [Fortini and Petrone, 2020] and [Fong et al., 2023].

An excellent review of the theoretical foundations can be found in [Fortini and Petrone, 2025].

2025

Exchangeability, Prediction and Predictive Modeling in Bayesian Statistics

Sandra Fortini, Sonia Petrone

Author Affiliations +

Statist. Sci. 40(1): 40-67 (2025). DOI: 10.1214/24-STS965

^{*}Known as conditionally identically distributed (c.i.d.).

Model Evaluation

03/06

There are many choices for the predictive $p(y_i \mid y_{1:i-1})$ which may be a good fit to the observations $y_{1:n}$.

How do we evaluate and choose between predictive models? How do we obtain model uncertainty?

■ JOURNAL ARTICLE

 $\label{thm:present Position} Position and Potential Developments: Some Personal Views: Statistical Theory: The Prequential Approach$

A. P. Dawid

Journal of the Royal Statistical Society, Series A (General), Vol. 147, No. 2, The 150th Anniversary of the Royal Statistical Society (1984), pp. 278-292 (15 pages)

■ JOURNAL ARTICLE

Strictly Proper Scoring Rules, Prediction, and Estimation

Tilmann Gneiting, Adrian E. Raftery

Journal of the American Statistical Association, Vol. 102, No. 477 (Mar., 2007), pp. 359-378 (20 pages)

- Introduction
- 2 The predictive Bayes framework
- Bayesian bootstrap
 - The empirical predictive
 - Bayes vs frequentism
- Predictive models
- Conclusions

The Empirical Predictive

Let us elicit the simplest nonparametric predictive, the empirical distribution:

$$p_n(y_{n+1}) = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}.$$

Predictive resampling involves repeating:

- **1** Resample $y_{n+1} \sim \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$
- ② Update $p_{n+1}(\cdot) = \frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{y_i}$

The drawn $y_{n+1:\infty}$ will be repeats of $y_{1:n}$, i.e. a Pólya urn giving

$$F_{\infty} := \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{y_i} = \sum_{i=1}^{n} w_i \delta_{y_i}$$

with $w_{1:n} \sim \text{Dirichlet}(1, \dots, 1)$.

The Bayesian Bootstrap

15/07

The key connection: the martingale posterior with the empirical distribution is equivalent to the Bayesian bootstrap [Rubin, 1981].

Predictive resampling:

$$w_{1:n} \sim \mathsf{Dirichlet}(1,\ldots,1), \;\; F_{\infty} = \sum_{i=1}^n w_i \delta_{y_i}$$

② Compute parameter:

$$\theta_{\infty} = \theta \left(F_{\infty} \right)$$

- ► Good properties under model misspecification
- ► Computationally fast and parallelizable compared to MCMC, can handle multimodality

Bayesian Bootstrap for the Linear Model

For a simple linear model

$$\ell(\beta, \gamma, y, x) = (y - \{\beta x + \gamma\})^2$$

sample $(\beta^{(j)}, \gamma^{(j)})$ from Bayesian bootstrap.

Bayesian and Frequentist Uncertainty

Frequentist bootstrap:

- ① Draw $[Y_{1:n}^* \mid y_{1:n}] \stackrel{\text{iid}}{\sim} \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$, giving us a random dataset $Y_{1:n}^*$
- **2** Compute $\theta(Y_{1:n}^*)$

Bayesian bootstrap:

- Draw $[Y_{n+1:\infty} \mid y_{1:n}] \sim P(\cdot \mid y_{1:n})$ from *joint* predictive of the empirical distribution, giving us a random complete dataset $Y_{1:\infty}$
- **2** Compute $\theta(Y_{1:\infty})$
- ▶ Bayesians consider uncertainty in $Y_{n+1:\infty}$ and estimand θ_0 ; frequentists consider uncertainty in $Y_{1:n}$ and estimator $\hat{\theta}$.
- ▶ Both methods only specify the empirical distribution, and resample.
- ▶ No need for a prior distribution to define posterior.

- Introduction
- 2 The predictive Bayes framework
- Bayesian bootstrap
- Predictive models
 - Parametric predictives
 - Nonparametric predictives
- Conclusions

Parametric Predictives

We can utilize a plug-in parametric predictive density, where our recursive update is based on stochastic gradient descent [Holmes and Walker, 2023]

$$y_{i+1} \sim p(y_{i+1} \mid y_{1:i}) = p_{\theta_i}(y_{i+1})$$

 $\theta_{i+1} = \theta_i + (i+1)^{-1} \nabla_{\theta} \log p_{\theta_i}(y_{i+1})$

- ▶ The plug-in predictive $p_{\theta_i}(y_{i+1})$ replaces the posterior predictive
- As the score function has mean zero under the model, our parameter is a martingale
- ► Allows for prior-free parametric posteriors without MCMC

Parametric Predictives

Student-t regression example:

Bayes: 2 min for MCMC

Parametric MP: 0.03 sec for PR

[Fong and Yiu, 2024a]

▶ We can extend this to a semiparametric predictive (work in progress):

$$p(y_{i+1} \mid y_{1:i}) = \frac{c}{c+i} p_{\theta_i}(y_{i+1}) + \frac{1}{c+i} \sum_{j=1}^{i} \delta_{y_j}$$

Nonparametric Recursive Updates

01/07

The Bayesian bootstrap, while intuitive, only returns a discrete F_{∞} . We want a more general recipe to elicit a predictive distribution that:

- Satisfies the martingale property
- Has a continuous density and is nonparametric
- Utilizes recursion for computational ease

For $p_i(y) = p(y \mid y_{1:i})$, consider the recursive update

$$\{p_i(y), y_{i+1}\} \to p_{i+1}(y).$$

One can look to Bayesian nonparametric mixture models for inspiration, e.g. [Newton and Raftery, 1994, Hahn et al., 2018].

Nonparametric Recursive Updates: Copulas

As an example, an online Bayesian kernel density estimate can be constructed using copulas:

$$p_{i+1}(y) = \frac{i}{i+1} p_i(y) + \frac{1}{i+1} \underbrace{k_i(y, y_{i+1})}_{\text{Copula kernel}}$$

Can be extended to conditional density estimate $p_i(y \mid x)$ for regression!

Nonparametric Recursive Updates: Copulas

Predictive resampling can be very expedient compared to traditional MCMC.

Copula (GPU): 0.5 seconds for p_n , 2 seconds for PR DPMM (CPU): 25 seconds for Gibbs sampling

Figure 2: Martingale posterior for the density

Nonparametric Recursive Updates: Quantiles

Nonparametric quantile function estimate acts as a *generative* predictive:

$$Y_{n+1} \sim Q_n(V)$$
 for $V \sim \mathcal{U}(0,1)$

where $Q_{i+1}(u) = g_i(Q_i(u), Y_{i+1})$ is a recursive update.

This gives the quantile martingale posterior [Fong and Yiu, 2024b].

- ▶ Montonicity is guaranteed due to the imputation step
- Theory relies on function-valued martingales to show posterior support, consistency, contraction rate, etc. No longer c.i.d.!

- Introduction
- 2 The predictive Bayes framework
- Bayesian bootstrap
- Predictive models
- 5 Conclusions

Conclusions

Foundations:

- ▶ Bayesian inference is about *imputing* $Y_{n+1:\infty}$ with $p(y_{n+1:\infty} | y_{1:n})$, which induces uncertainty on $\theta(Y_{1:\infty})$
- ▶ Bootstrap interpretation is insightful: Bayesian uncertainty arises from $Y_{n+1:\infty}$, whereas frequentist arises from $Y_{1:n}$

Methodology:

- ► The predictive Bayesian approach involves specifying the predictive distribution directly as the statistical model.
- ▶ We can generalize Bayes to the *martingale posterior* by considering other predictive distributions no need for likelihood nor prior.

Conclusions

Strengths:

- ► (Almost) exact posterior sampling can be carried out without MCMC, which offers potentially large computational speed-ups.
- ▶ It is possible to carry out Bayesian inference without explicitly specifying a prior $\pi(\theta)$.
- ► Can be robust to model misspecification (but not always).

Weaknesses:

- ► Martingale condition is restrictive: can we relax it and incoporate machine learning?
- ▶ Incoporating structure into the predictive (e.g. hierarchy, dependence) is difficult without going through the likelihood-prior machinery.
- ► Theoretical properties are harder to show for predictive Bayesian methods.

Thank you!

References I

[Bernardo and Smith, 2009] Bernardo, J. and Smith, A. (2009). Bayesian Theory.

Wiley Series in Probability and Statistics. Wiley.

[Berti et al., 2020] Berti, P., Dreassi, E., Pratelli, L., and Rigo, P. (2020). A class of models for Bayesian predictive inference. Bernoulli, 27(1):702-726.

[Dawid, 1984] Dawid, A. P. (1984).

Present position and potential developments: Some personal views statistical theory the prequential approach.

Journal of the Royal Statistical Society: Series A (General), 147(2):278-290.

[Doob, 1949] Doob, J. L. (1949).

Application of the theory of martingales.

Actes du Colloque International Le Calcul des Probabilités et ses applications (Lyon, 28 Juin-3 Juillet 1948), Paris CNRS, 23-27.

[Fong et al., 2023] Fong, E., Holmes, C., and Walker, S. G. (2023). Martingale posterior distributions.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(5):1357-1391.

References II

```
[Fong and Yiu, 2024a] Fong, E. and Yiu, A. (2024a).
Asymptotics for parametric martingale posteriors.
arXiv preprint arXiv:2410.17692.
[Fong and Yiu, 2024b] Fong, E. and Yiu, A. (2024b).
```

Bayesian quantile estimation and regression with martingale posteriors. arXiv preprint arXiv:2406.03358.

[Fortini and Petrone, 2020] Fortini, S. and Petrone, S. (2020).

Quasi-Bayes properties of a procedure for sequential learning in mixture models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(4):1087–1114.

[Fortini and Petrone, 2025] Fortini, S. and Petrone, S. (2025). Exchangeability, prediction and predictive modeling in bayesian statistics. Statistical Science, 40(1):40–67.

[Geisser, 1993] Geisser, S. (1993).
Predictive inference, volume 55.
CRC press.

[Hahn et al., 2018] Hahn, P. R., Martin, R., and Walker, S. G. (2018). On recursive Bayesian predictive distributions. Journal of the American Statistical Association, 113(523):1085–1093.

References III

```
[Holmes and Walker, 2023] Holmes, C. C. and Walker, S. G. (2023). Statistical inference with exchangeability and martingales. Philosophical Transactions of the Royal Society A, 381(2247):20220143.
[Newton and Raftery, 1994] Newton, M. and Raftery, A. (1994). Approximate Bayesian inference by the weighted likelihood bootstrap. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 56:3 – 48.
[Rubin, 1981] Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9(1):130–134.
```