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Welcome to the post-Bayesian seminar!

Important Links

At a glance/website: https://tinyurl.com/postBayesWebsite
Where to subscribe to mailing list: https://tinyurl.com/postBaye&Subscribe'
Where to subscribe to calendar: https://tinyurl. com/postBayedCaIendar :
Where to attend the seminars: https://tinyurl.com/postBayesZoom '

Where recorded seminars are stored: https://tinyurl.com/postBayesYT 1
Where to register for the workshop: https://tinyurl.com/postBayesWorkshop'

Please share widely! :)
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Welcome to the post-Bayesian seminar!

Questions / Comments during talks

During talk:

- use Q/A function in zoom

- Other questions can be upvoted

- We will try to monitor questions and ask relevant ones in natural breaks
After talk:

Raise your hand in zoom
We will do our best to decide who gets to ask a question fairly
We will do our best to resolve remaining questions in Q / A function



Problematic Assumptions for Bayesian Analysis @

(A1) model well-specified
prior well-specified
(A3) computationally feasible

(A1) |x1:n ~ p(x,., | 6%) for some 6* € ©
® = Only relevant State of the world

|7(0) = uncertainty about the true State of the world|

How rational decision-makers choose the prior

(A3)

7,0 | x,.,,) computable in practice

Guarantees real-world relevance
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Generalised Bayes (11/02—22/04)

Prof. Jeremias Knoblauch
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Martingale posteriors & Chapter 2

resampling-based

2pproaches DADLDY Predictive Bayes
Fori=1.2,...
- 06/05—15/07
Xn+i+l ~ p(Xn+i | Xl:no Xn+l:n+i) ( )
0 = argrninﬂe@ L ([xlzn’ Xn+1:oo]’ 9)

Dr. Edwin Fong

(HKU)
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Structure of Chapter 2

20/05: Theoretical foundations of predictive Bayes
(Prof. Sandra Fortini)

03/06: Predictive model selection and uncertainty
(Vik Shirvaikar)

01/07: Recursive methods for predictive Bayes
(Prof. Lorenzo Cappello)

15/07: Applications of post-Bayesian methods
(Dr. Harita Dellaporta + Matias Altamirano)
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Chapter 2: Predictive Bayes

Introduction and Overview

Edwin Fong

The University of Hong Kong

Post-Bayes Seminar 2025
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@ Introduction
@ Predictive Bayes in a nutshell
@ History of predictive Bayes
@ Predictive resampling
@ A parametric example
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Traditional Bayes in a Nutshell

The traditional Bayesian specifies the sampling density/likelihood p(y | 0)
and the prior 7(0) as their model.

Given observations y3.,, the Bayesian obtains:

@ The posterior for parameter inference:

(0| yin) o< [ [ p(yi | 6) 7(6)
i=1
@ The marginal likelihood for model selection:

P(yim) = / [L i 16)(6) a0

© The posterior predictive density for prediction:

p(}/n—l—l ’ y1:n) = /P(Yn+1 ’ 9) 7T(0 ‘ Y1:n) de.
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Predictive Bayes in a Nutshell

The predictive Bayesian reverses the order, and directly specifies the
predictive density p(y,+1 | y1.n) as their model.

Given observations y1.,, the predictive Bayesian obtains:

© The posterior for parameter inference:

Yn+1:oo ~ H p()/i | )/l:ifl)v 0= Q(Yn-i-l:oo)
i=n+1

© The marginal likelihood for model selection:

)/1n HP}/I|)/11 1

© The implicit likelihood p(y | €) and prior 7(0) (sometimes)
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Predictive Bayes in a Nutshell

Why is working with the predictive p(y,+1 | y1.n) directly desirable?

@ We have gotten pretty good at eliciting predictive distributions
p(Yn+1 | Y1:n), €.g. with machine learning.

@ Predictive statements can be validated as data y is actually observed,
unlike probability statements on 6 (like the prior).

© Sometimes the computation required for posterior inference can be
much more expedient with the predictive approach.
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Some History on Predictive Bayes

Predictive Bayes has a long history, dating all the way back to de Finetti.

BRUNO DE FINETTI

Foresight: Its Logical Laws,

Its Subjective Sources
(1937)

De Finetti’s Representation Theorem: An infinitely exchangeable
binary sequence Y; € {0,1} has the representation

1[N
p(Yl,...,YN):/O [Heyfu—o)l—yf] = (60) do
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Some History on Predictive Bayes

Furthermore, we have

1N
lim N;Yiz@

N—oo
where © ~ 7. De Finetti identified that the parameter © and the prior 7

can be written as a function of only binary exchangeable observables!

An insightful excerpt from [Bernardo and Smith, 2009, Chapter 4.9]:

lim P(ﬁl <8

(r—m)— (Tl - m) -

Lleeenns z,,,) =Q(0)xy,....xm).

Thus, a posterior distribution for a parameter is seen to be a limiting case of
a posterior (conditional) predictive distribution for an observable.
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Some History on Predictive Bayes

Other well-known proponents of the predictive approach
include Phil Dawid [Dawid, 1984], who coined the pre-
quential approach, and Seymour Geisser [Geisser, 1993].

20/05

There has been a recent resurgence in interest of the predictive approach:

JOURNAL ARTICLE
Quasi-Bayes Properties of a Procedure for Sequential
Learning in Mixture Models © Februany 202 . _—
Sandra Fortint Sonia Petrone & A class of models for Bayesian predictive
o o » inference
Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 82, Issue
. Patrizia Berti, Emanuela Dreassi, Luca Pratelli, Pietro Rigo
4, September 2020, Pages 1087-1114, https://doi.org/10.1111/rssb.12385
ermau 271702726 Gebruary 2021). DO 1031502086125

Published: 29 June 2020  Article history v

JOURNAL ARTICLE
Martingale posterior distributions 3

Edwin Fong,, Chris Holmes i , Stephen G Walker  Author Notes

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 85, Issue
5, November 2023, Pages 1357-1391, https://doi.org/10.1093/jrsssb/qkad005

Published: 02 February 2024  Article history v



Bayesian Uncertainty

Statistical uncertainty arises as only a finite sample y;., is observed.
Given the entire population yj.o, the parameter 05 = 0(y1.00) would be
known precisely.

We argue that the source of Bayesian uncertainty is precisely the
unobserved remainder of the population, ¥, i1:00-

Given Yi., = y1.n, We view Bayesian posterior sampling as:

o ImPUte the population: Yn+1:oo ~ p()/nJrl:oo ‘ y1:n)
@ Compute the parameter: 0., = 0(Y1.0)

Doob'’s consistency theorem [Doob, 1949] shows that 0., ~ (0 | y1.,).
The Bayesian imputes what they need to know the parameter.
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Posterior Sampling

Table 1: Observed Sample

Table 2: Imputed Population 1

U;'t 1AO E ¢ Predictive Unit| A B C
Resamplin 1 110 5 8

n=2 6 7 10 pling 2 6 7 10
3 7?7 7 -7 3 4 20 12

4 2 7 2 4 |12 12 18
N2 7 2 N |19 15 12

Table 3: Imputed Population 2

Predictive Unit| A B C
Resamplin 1 |10 5 8
P 2 |6 7 10

3 6 18 13

4 10 9 21

N |15 12 16

10/38



Imputation with Predictive Resampling

Denoting p; = p(yi+1 | y1:i), we have the sequential imputation algorithm
to draw from p()/n+1:N | yl:n) = H;V:n+1 p(yi ’ )/1:i71)2

Algorithm 1: Predictive Resampling (PR)

Compute p, from the observed data y;.,
N > nis a large integer
for j«+ 1 to B do
for i< n+1to N do
Sample Y; ~ p;_1
Update p; <= {pi_1, Yi}
end
Evaluate 9%):: 0(Yin)
end
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Parametric Example

Let fy(y) = N(y | 0,1), with 7(0) = N(0 | 0,1). The posterior density
takes the form 7(6 | y1.,) = N(0 | 0,,52) where

The posterior predictive density is then

P(Ynt1 | yiin) = N(Yns1 | On, 1+ 53).

Predictive resampling (PR):

© Draw ypi1 ~ N(Ynt1 | On, 14 52)

@ Update B = S0 yif(n+2), 52,3 = 1/(n+2)
© Repeat until N
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Parametric Example

We generated yl;,,ii(}./\/'(y | @ =2,1) for n =10, giving 6, =1.84.

Doob’s theorem: distribution of @y is approximately (6 | y1.,).

Figure 1: (a) Sample paths of 8,,,; through forward sampling; (b) Kernel density estimate of Ay
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© The predictive Bayes framework
@ Martingale posteriors
@ Parameters
@ Theoretical foundations
@ Model evaluation
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Martingale Posterior: A Predictive Framework

Consider more general {p(y; | y1:i—1) }i=nt1,n+2,... and Ooe = 0( Y1.00).
No need for likelihood/prior, but predictives must satisfy a martingale
condition.

Step 1: Predictive resampling

> Sequentially draw Yyi1 ~ p(ynt1 | yiin), Yor2 ~ p(Yos2 | yiint1), -
until we have Y7., noting Y1., = y1., is fixed.

Step 2: Recover parameter of interest

» Compute parameter of interest:
0o = 0(Y1:00),
e.g. the mean or median of Y7.«.
We call the distribution of 6., the martingale posterior.
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Parameter of Interest

iid . . .
For yi.n ~ Fp, a more general parameter of interest is defined:

0(Fo) = arggmin /f(@,y)dFo(y)

» For example, £(,y) = |y — 0] gives the median and (y — 0)? gives
the mean.

» For model fitting, let £(6,y) = — log fy(y), where fp is the likelihood
or pseudolikelihood
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Martingale Posterior Distributions

To summarize:

O Impute Y,i1.00 from joint predictive:

oo
p(yniroo | yin) = [ PUi | yri-1)
i=n+1

@ Compute 05 = 0( Y1.:00)

Choice of predictive p(yn+1 | y1:n):
» Posterior predictive: Bayesian posterior
» Empirical distribution: Bayesian bootstrap

» General predictive distribution: martingale posterior

» Usually required to satisfy a martingale condition
> We will cover a few parametric/nonparametric examples later in this
talk!

17/38



Theoretical Foundations

Our sequence of predictive distributions p(y; | y1.i-1)
should not be chosen arbitrarily. What conditions should
the predictive distribution satisfy?

20/05

A martingale condition* is required in [Berti et al., 2020],
[Fortini and Petrone, 2020] and [Fong et al., 2023].

An excellent review of the theoretical foundations can be found in
[Fortini and Petrone, 2025].

2025
Exchangeability, Prediction and Predictive
Modeling in Bayesian Statistics

Sandra Fortini, Sonia Petrone

Author Affiliations +

Statist. Sci. 40(1): 40-67 (2025). DOI: 10.1214/24-5TS965

*Known as conditionally identically distributed (c.i.d.).



Model Evaluation

There are many choices for the predictive p(y; | y1.i—1) which

: _ 03/06
may be a good fit to the observations y;.j.

How do we evaluate and choose between predictive models? How do we
obtain model uncertainty?

E JOURNAL ARTICLE

Present Position and Potential Developments: Some Personal Views: Statistical Theory: The
Prequential Approach

A.P. Dawid

Journal of the Royal Statistical Society. Series A (General), Vol. 147, No. 2, The 150th Anniversary of the Royal Statistical Society
(1984), pp. 278-292 (15 pages)

[E] JOURNAL ARTICLE
Strictly Proper Scoring Rules, Prediction, and Estimation

Tilmann Gneiting, Adrian E. Raftery
Journal of the American Statistical Association, Vol. 102, No. 477 (Mar., 2007), pp. 359-378 (20 pages)
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© Bayesian bootstrap
@ The empirical predictive
@ Bayes vs frequentism
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The Empirical Predictive

Let us elicit the simplest nonparametric predictive, the empirical
distribution:
yn+1 Z 5 it

Predictive resampling involves repeating:
© Resample y,1 ~ %Z," 10y,
@ Update pyi1() = 71 Z”“ 8y,

The drawn y,41.00 Will be repeats of yi.,, i.e. a Pdlya urn giving




The Bayesian Bootstrap

15/07

The key connection: the martingale posterior with the empirical
distribution is equivalent to the Bayesian bootstrap [Rubin, 1981].

© Predictive resampling:
n
win ~ Dirichlet(1,...,1), Foo= > widy,
i=1

@ Compute parameter:
O = 0 (Fso)

» Good properties under model misspecification

» Computationally fast and parallelizable compared to MCMC, can
handle multimodality
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Bayesian Bootstrap for the Linear Model

Bayesian Bootstrap Samples of Slope 8 and Intercept y

151 Sampls . .| For a simple linear model
5.0
_ 2
. UB,7,y,x) = (y —{Bx+1})
> 0.0
- sample (ﬁ(j),fyg)) from Bayesian
5.0
e bootstrap.
-0 -4 -2 0 2 4
0s * Bayesian Bootstrap Posterior KDE of Slope B and Intercept y
2 1.0
04

Dirichlet weights
° o
9 by
Y
KN °
'o
° °
= >
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Bayesian and Frequentist Uncertainty

Frequentist bootstrap:
@ Draw [Y7, | yl;,,]irixgl%zlf':l dy,, giving us a random dataset Y7,
@ Compute 6(Y7',)

Bayesian bootstrap:

© Draw [Yit1:00 | Y1:n] ~ P(: | y1:n) from joint predictive of the
empirical distribution, giving us a random complete dataset Y7.

@ Compute 0(Yi:0)

» Bayesians consider uncertainty in Y}, 11.00 and estimand 6p;
frequentists consider uncertainty in Y7., and estimator 6.

» Both methods only specify the empirical distribution, and resample.

» No need for a prior distribution to define posterior.
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@ Predictive models
@ Parametric predictives
@ Nonparametric predictives
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Parametric Predictives

We can utilize a plug-in parametric predictive density, where our recursive
update is based on stochastic gradient descent [Holmes and Walker, 2023]

Yit1 ~ P(Yit1 | y1.i) = po,(Vi+1)
01 =0; + (i + 1) Vg log py, (yi+1)

» The plug-in predictive pg,(yi+1) replaces the posterior predictive

» As the score function has mean zero under the model, our parameter
is a martingale

» Allows for prior-free parametric posteriors without MCMC

26 /38



Parametric Predictives

Student-t regression example :
Bayes: 2 min for MCMC

Parametric MP: 0.03 sec for PR
[Fong and Yiu, 2024a]

— Bayes
--- Hybrid MP
-+ Truncated MP

0.05 010 015 020 025 030 035 0.40
Coef. for arm (2)

> We can extend this to a semiparametric predictive (work in progress):

c 1 <
i i) = ——— Po; (Vi =20y
p(yit1 | yri) C+,p9:(y+1)+c+/; i
J:
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Nonparametric Recursive Updates :

01/07

The Bayesian bootstrap, while intuitive, only returns a discrete Fo,. We
want a more general recipe to elicit a predictive distribution that:

@ Satisfies the martingale property
@ Has a continuous density and is nonparametric

o Utilizes recursion for computational ease

For pi(y) = p(y | y1.i), consider the recursive update

{pi(y), yis1} = piva(y).

One can look to Bayesian nonparametric mixture models for inspiration,
e.g. [Newton and Raftery, 1994, Hahn et al., 2018].



Nonparametric Recursive Updates: Copulas

As an example, an online Bayesian kernel density estimate can be
constructed using copulas:

i

pi+1(y) = ——=pi(y) + — kily,yit1
() = =7 P + g ki)
Copula kernel
— cplu;, vip; — P
0.8 pi 0.8 pi
o Vi1 Yi+
>\06 >0.6
§0.4 EO.A
0.2 0.2
0.0 0.0
-4 -2 0 2 4 6 -4 -2 0 2 4 6
y y
@ ®

Can be extended to conditional density estimate p;(y | x) for regression!
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Nonparametric Recursive Updates: Copulas

Predictive resampling can be very expedient compared to traditional
MCMC.

Copula (GPU): 0.5 seconds for p,, 2 seconds for PR
DPMM (CPU): 25 seconds for Gibbs sampling

Copula DPMM

@ ®
Figure 2: Martingale posterior for the density
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Nonparametric Recursive Updates: Quantiles

Nonparametric quantile function estimate acts as a generative predictive:
Yntr1 ~ Qn(V) for V ~1(0,1)

where Qi1+1(u) = gi(Qi(u), Yi+1) is a recursive update.
This gives the quantile martingale posterior [Fong and Yiu, 2024b].

Exact GP

» Montonicity is guaranteed due to the imputation step

» Theory relies on function-valued martingales to show posterior
support, consistency, contraction rate, etc. No longer c.i.d.!
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© Conclusions
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Conclusions

Foundations:

» Bayesian inference is about imputing Y,11.00 With p(Vnt1:00 | Y1:n),
which induces uncertainty on 6(Y1.00)

» Bootstrap interpretation is insightful: Bayesian uncertainty arises
from Yp11.00, Whereas frequentist arises from Yi.,

Methodology:

» The predictive Bayesian approach involves specifying the predictive
distribution directly as the statistical model.

» We can generalize Bayes to the martingale posterior by considering
other predictive distributions - no need for likelihood nor prior.
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Conclusions

Strengths:

» (Almost) exact posterior sampling can be carried out without MCMC,
which offers potentially large computational speed-ups.

» It is possible to carry out Bayesian inference without explicitly
specifying a prior 7(0).
» Can be robust to model misspecification (but not always).

Weaknesses:

» Martingale condition is restrictive: can we relax it and incoporate
machine learning?

» Incoporating structure into the predictive (e.g. hierarchy, dependence)
is difficult without going through the likelihood-prior machinery.

» Theoretical properties are harder to show for predictive Bayesian
methods.

34/38






References |

[Bernardo and Smith, 2009] Bernardo, J. and Smith, A. (2009).
Bayesian Theory.

Wiley Series in Probability and Statistics. Wiley.

[Berti et al., 2020] Berti, P., Dreassi, E., Pratelli, L., and Rigo, P. (2020).
A class of models for Bayesian predictive inference.
Bernoulli, 27(1):702-726.

[Dawid, 1984] Dawid, A. P. (1984).

Present position and potential developments: Some personal views statistical theory the
prequential approach.

Journal of the Royal Statistical Society: Series A (General), 147(2):278-290.

[Doob, 1949] Doob, J. L. (1949).
Application of the theory of martingales.

Actes du Colloque International Le Calcul des Probabilités et ses applications (Lyon, 28
Juin—3 Juillet 1948), Paris CNRS, 23-27.

[Fong et al., 2023] Fong, E., Holmes, C., and Walker, S. G. (2023).
Martingale posterior distributions.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(5):1357-1391.

36/38



References |l

[Fong and Yiu, 2024a] Fong, E. and Yiu, A. (2024a).
Asymptotics for parametric martingale posteriors.
arXiv preprint arXiv:2410.17692.

[Fong and Yiu, 2024b] Fong, E. and Yiu, A. (2024b).
Bayesian quantile estimation and regression with martingale posteriors.
arXiv preprint arXiv:2406.03358.

[Fortini and Petrone, 2020] Fortini, S. and Petrone, S. (2020).
Quasi-Bayes properties of a procedure for sequential learning in mixture models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(4):1087-1114.

[Fortini and Petrone, 2025] Fortini, S. and Petrone, S. (2025).

Exchangeability, prediction and predictive modeling in bayesian statistics.
Statistical Science, 40(1):40-67.

[Geisser, 1993] Geisser, S. (1993).
Predictive inference, volume 55.
CRC press.

[Hahn et al., 2018] Hahn, P. R., Martin, R., and Walker, S. G. (2018).
On recursive Bayesian predictive distributions.
Journal of the American Statistical Association, 113(523):1085-1093.

37/38



References 1|

[Holmes and Walker, 2023] Holmes, C. C. and Walker, S. G. (2023).
Statistical inference with exchangeability and martingales.
Philosophical Transactions of the Royal Society A, 381(2247):20220143.

[Newton and Raftery, 1994] Newton, M. and Raftery, A. (1994).
Approximate Bayesian inference by the weighted likelihood bootstrap.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 56:3 — 48.

[Rubin, 1981] Rubin, D. B. (1981).
The Bayesian bootstrap.
The Annals of Statistics, 9(1):130-134.



	Introduction
	Predictive Bayes in a nutshell
	History of predictive Bayes
	Predictive resampling
	A parametric example

	The predictive Bayes framework
	Martingale posteriors
	Parameters
	Theoretical foundations
	Model evaluation 

	Bayesian bootstrap
	The empirical predictive
	Bayes vs frequentism 

	Predictive models
	Parametric predictives
	Nonparametric predictives

	Conclusions

	anm0: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


