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A quick promotion



Main topics to cover
1. Gibbs Measures (aka Generalised Bayesian belief updates)


2. Concentration


1. “Old School” - Limit theory


2. “New School” - PAC-Bayes (V.cool, read Pierre’s papers on it) 


3. Coverage results and posterior asymptotic normality results


4. Examples/Applications of theory. 



Key Papers
Concentration

Asymptotic Normality

“Applications” of theory

1. Syring and Martin (2023): arxiv:2012.04505


2. Alquier and Ridgeway (2020):  arXiv:1706.09293.

1. Miller (2021): https://www.jmlr.org/papers/volume22/20-469/20-469.pdf


2. Martin and Syring (2022): arxiv:2203.09381

1. Prediction: McLatchie et al (2024) (arxiv:2408.08806)


2. Estimated loss functions: Frazier et al. (2024) (arXiv:2404.15649)

http://arxiv.org/abs/1706.09293


Standard Bayesian beliefs

π(θ |KLn) =
∏n

i=1 pθ(xi)π(θ)

∫ ∏n
i=1 pθ(xi)π(θ)dθ

= argminq∈𝒫(Θ) {𝔼θ∼q [n ⋅ KLn (Pn, Pθ)] + KL(q, π)}

Standard Bayes posterior

KLn (Pn, Pθ) = −
1
n

n

∑
i=1

log pθ(xi)+C

Empirical measure, Pn =
1
n

n

∑
i=1

δxi

A general framework for updating belief distributions, Bissiri, P.G., Holmes, C., & Walker, S.G. (2016)

An Optimization-centric View on Bayes' Rule: Reviewing and Generalizing Variational Inference, Knoblauch, J., Jewson, J., & Damoulas, T. (2022). 



Loss-based Bayesian beliefs

π(θ |Dn) =
exp{−n ⋅ ω ⋅ Dn(θ)}π(θ)

∫ exp{−n ⋅ ω ⋅ Dn(θ)}π(θ)dθ
= argminq∈𝒫(Θ) {𝔼θ∼q [n ⋅ ω ⋅ Dn (θ)] + KL(q, π)}

Gibbs measure

An Optimization-centric View on Bayes' Rule: Reviewing and Generalizing Variational Inference, Knoblauch, J., Jewson, J., & Damoulas, T. (2022). 

Principles of Bayesian Inference using General Divergence Criteria, Jewson, J., Smith, J., & Holmes, C., (2016)

Examples: Dn(θ) =
1
n

n

∑
i=1

D(yi, θ), Dn(θ) = D(Pn, Pθ)



Is  a reasonable set of beliefs? π(θ ∣ Dn)
• Are inferences based on  are “reliable/reasonable/useful”?


• One way we measured “reasonable-ness’’ is to consider “large sample”/
“average”/“high-probability” behaviour.


• Why? 


• Std. Bayes has nice regular behaviour. Want something similar for . 


• Posterior Concentration: Want  to assign mass to regions where 
loss is small. 


• Posterior Normality (asymp):  should be roughly Gaussian in 
large samples (Bernstein-von Mises phenomenon). 

π(θ ∣ Dn)

π(θ ∣ Dn)

π(θ ∣ Dn)

π(θ ∣ Dn)



Posterior Concentration



Posterior Concentration

• Most basic property one could 
really want. 


• More data = More precise 
inferences


• Posteriors become more peaked

First Basic Requirement



How to formalise?
Clearly, nothing like ``truth’’ for Gibbs measures. Population loss minimiser:


                                       


Hope is that   concentrates onto . 


θ⋆ := arg min
θ∈Θ

𝔼 [Dn(θ)]
π(θ ∣ Dn) θ⋆

Definition. The Gibbs posterior  concentrates around  at rate (at least) , 
with respect to a metric , if





where  arbitrarily slowly or is a sufficiently large constant.

π(θ ∣ Dn) θ⋆ εn
d(θ, θ′￼)

𝔼 Π (θ : d (θ; θ⋆) > Mnεn ∣ Dn) → 0,  as n → ∞, Mn > 0

Mn → ∞



Why should I care?
•  tells us how fast we can expect our posterior inferences to concentrate 

around  - for a fixed learning rate.


• Makes clear the link between prior and its impact on the posterior: bad priors 
lead to slower concentration.


• Imbeds link between model size and sample size: larger model, slower 


• For example: if , then 


• If  is slower.

ϵn
θ⋆

ϵn

θ ∈ Θ ⊆ ℝd ϵn ≍ 1/ n

d → ∞ as n → ∞,  then ϵn



Concentration Examples



Concentration Examples



When is this likely to be satisfied?
Two Key Conditions: Prior mass and well-behaved loss

• The sets  depend on the expected loss  and depend on 
the type of argument used in the proof. 


• Common sets:  , 


• 


•  is like variance of loss diff.


• If  is bounded, then 

ℬn D(θ) = 𝔼[D(Y, θ)]

ℬn := {θ : m (θ, θ⋆) ∨ v (θ, θ⋆) ≤ εr
n}

m(θ, θ⋆) = D(θ) − D(θ⋆)

ν(θ, θ⋆)

ν(θ, θ⋆) ℬn := {θ : m (θ, θ⋆) ≤ εr
n}

Prior mass condition:  for certain sets  with radius ℬn with radius ϵr
n, r > 0,

Π[θ ∈ ℬn] ≥ e−nϵr
n



Well-Behaved loss condition
• Gibbs measures look like 


• Hence, we really need  to exist, and be well-behaved.


• Many different ways to accomplish this:


• Loss has an exponential moment: 


• Hoeffding or Bernstein-type condition: 


• Uniform CLT + Well-separated points: for all , 




• Similar concentration rate under each of these…  

e{−nωDn(θ)} × π(θ)

e{−nω[Dn(θ)−Dn(θ⋆)]}

𝔼e{−ω[D(Y,θ)−D(Y,θ⋆)]} < 1

∫Θ
𝔼e{−nω[Dn(θ)−Dn(θ⋆)]π(θ)dθ < eω2C/n

sn > 0, s.th. ωnns2
n → ∞

ℙ [ sup
θ:d(θ, θ⋆)≥sn

nωn {Dn(θ) − Dn (θ⋆)} > − c1ns2
nωn] = o(1)



In Summary: Well-behaved loss + Prior Mass= 
Posterior concentration



What about intractable loss functions?
π(θ |Dn) ∝ exp{−n ⋅ D(Pn, Pθ)}π(θ)

Want to compute: MMD2(Pn, Pθ) = 𝔼X∼Pn,X′￼∼Pn
[k(X, X′￼)] − 2𝔼X∼Pn,Y∼pθ

[k(X, Y)] + 𝔼Y∼pθ,Y′￼∼pθ
[k(Y, Y′￼)]

Can compute: MMD2(Pn, Pm,θ) = 𝔼X∼Pn,X′￼∼Pn
[k(X, X′￼)] − 2𝔼X∼Pn,Y∼Pm,θ

[k(X, Y)] + 𝔼Y∼Pm,θ,Y′￼∼Pm,θ
[k(Y, Y′￼)]

=
1
n2

n

∑
i=1

n

∑
j=1

k(xi, xj) +
1

m2

m

∑
j=1

m

∑
j=1

k(yi, yj)−2
1

nm

n

∑
i=1

m

∑
j=1

k(xi, yj)

=
1
n2

n

∑
i=1

n

∑
j=1

k(xi, xj) +𝔼Y∼pθ,Y′￼∼pθ
[k(Y, Y′￼)]−

2
n

n

∑
i=1

𝔼Y∼pθ
[k(xi, Y)]

Intractable expectations

Generalised Bayesian likelihood-free inference using scoring rule estimators, Pacchiardi, L. & Dutta, R. (2021)

MMD-Bayes: Robust Bayesian estimation via maximum mean discrepancy, Cherrief-Abdellatif, B.E. & Alquier, P. (2020)



Computation: accounting for model samples

π(θ | ̂D m,n, z1:m) ∝ exp{−n ⋅ ̂D (Pn, Pm,θ)}π(θ)

π(θ | ̂D m,n, z1:m) constructed from draws z1:m
i.i.d.∼ Pθ 

π(θ | ̂D m,n) ∝ π(θ) ⋅ 𝔼z1:m∼Pθ [exp{−n ⋅ ̂D (Pn, Pm,θ)}]

is itself random, and an (unbiased) estimate of π(θ | ̂D m,n)

How different is π( ⋅ ∣ Dn) from π( ⋅ ∣ ̂D m,n)?

Research questions: (1) Quantify how differnce b/t π(θ |Dn) and π(θ | ̂D m,n)?
(2) How does  ̂D m,n dictate behaviour of  and π(θ ∣ ̂D m,n)?



Does loss estimation matter?
Data generated iid from Gaussian copula ρ = 0.5
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Concentration: accounting for loss estimation

Theorem 2:

Under a Bernstein condition on the loss, and other regularity conditions, if m, n → ∞,
for Mn > 0, possibly Mn → ∞ slowly and m = m(n) → ∞

𝔼 (∫Θ
|D(θ) − D(θ⋆) | π(θ ∣ ̂D m,n)dθ >

log(n)Mn

min{n1/2, m1/2} ) ⟶ 0.



Asymptotic Posterior Normality 
(BvM)



• Concentration is helpful, but if 
, then , 

doesn’t really tell us much… 


• Need something more 
informative. 


• What behaviour should we 
expect?  

θ ∈ Θ ⊆ ℝd ϵn ≈ 1/ n

A Next Step



A Next Step

• Concentration is helpful, but if 
, then , 

doesn’t really tell us much… 


• Need something more 
informative. 


• What behaviour should we 
expect?  


• What do you see?

θ ∈ Θ ⊆ ℝd ϵn ≈ 1/ n



• Need some external notion of 
reliability with which to compare 
posteriors. 


• Enter BvM: “older” view… 

Why BvM? Brief History Lesson



Why BvM? Second order behavior…
• In large samples, and parametric models, , behaves like


• 


• For some remainder term  that can be suitably controlled, and  
. (Note:  must be psd, fine as a min!)


• This follows from a 2nd-order TSE of  around 


• 


• Therefore, variability of  is determined by 

π(θ ∣ Dn)

π(θ ∣ Dn) ∝ |det{Hn(θn)} |−1/2 exp {−
ωn
2

(θ − θn)⊤Hn(θn)(θ − θn) + Rn(θ, θn)} π(θ),

Rn(θ)
Hn(θ) = ∇2

θDn(θ) Hn(θn)

Dn(θ) θn or θ⋆

Dn(θ) − Dn(θn) = (θ − θn)⊤ ∇θDn(θn) +
n
2

(θ − θn)⊤Hn(θn)(θ − θn) + Rn(θ, θn)

π(θ ∣ Dn) Hn(θ) = ∇2
θDn(θ)



Why BvM? Second order behavior
Requirements

• Essentially, any loss that admits a well-behaved quadratic expansion in
 will ensure the Gibbs measure is asymptotically normal.


• This is not strictly necessary as this can be weakened using equi-continuity 


• Lots of examples satisfy this condition. From Miller (2021) (arxiv:1907.09611)


• Losses like: composite likelihoods, quasi-likelihoods, 


• Specific examples: GLMs, Gaussian Markov random fields, Boltzmann 
machines, Cox models


• And many more losses/models will satisfy the conditions necessary for a BvM.

n(θ − θ⋆)



• For reasonable sample sizes, the 
prior washes out. 


• Posterior concentrates onto a 
single point in model space.


• Credible sets shrink like 
H−1

n / nω2

Visually?



Implications?

• A Gibbs-based credible set for , say , has width proportional to .


•  ?


• Correct width would be 


• Any hope? Generalised information matrix identity: for some ,   
, 


• Ryan Martin will talk about how we can find such an ! 


• May be a way around this for smooth losses: Frazier, et al. (2023) arXiv:2311.15485 

θ⋆ CHn
1−α H−1

n / nω2

Pr {θ⋆ ∈ CHn
1−α} = 1 − α

H−1
n Var{∇θ nDn(θ⋆)}H−1

n

ω > 0
Var{∇θ nDn(θ⋆)}H−1 = ω ⋅ I

ω



• Need some external notion of 
reliability with which to compare 
posteriors. 


• Old view of BvMs… 


• Newer view of BvMs…

Why BvM? Brief History Lesson



• Learning rates matter for 
inference…


• But what about prediction… 


• Seems less sensitive, especially 
in large samples.


• More important is and model!θ⋆

Does it matter if we only 
care about prediction?





Important in smaller samples, definitely! 



Important in smaller samples, definitely! 



Important in smaller samples, definitely! 

But not really in large samples! 



Important in smaller samples, definitely! 

But not really in large samples! 



What’s behind this behaviour?
Posterior Concentration! 

Result. For the 
Gibbs posterior predictive 


 , 


satisfies





Similar result achievable in KL divergence as well.

ωn ≥ 0, even ωn → 0,  such that , nωnϵ2
n → ∞, ωn ≫ log(n)/n,

p(ω)
n ( ⋅ ∣ y1:n, Dn) = ∫Θ

fθ( ⋅ ∣ y1:n)π(ωn)(θ ∣ Dn)dθ

𝔼 [dTV {fθ⋆ ( ⋅ ∣ y1:n), p(ω)
n ( ⋅ ∣ y1:n, Dn)}] ≤ εn + o(1) .



- Inspired by Thomas Carlyle, Chartism, Chapter II, Statistics: 

We use asymptotics not to obtain direct knowledge of the phenomenon 
we are observing, but to save ourselves the embarrassment of 
believing in easy and ultimately verifiably false truths.  


