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In standard Bayesian inference, it is assumed that the model is correct.

However, small violations of this assumption can have a large impact,
and unfortunately, “all models are wrong.”

Is it possible to draw coherent inferences from a misspecified model?

Can this be done in a computationally-tractable way?

In the context of model averaging and Bayesian nonparametrics, can
we be tolerant of models that are “close enough”?
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Example: Mixture models

Mixtures are often used for clustering.

But if the data distribution is not exactly a mixture from the assumed
family, the posterior will tend to introduce more and more clusters as
n grows, in order to fit the data.

As a result, the interpretability of the clusters may break down.
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Somewhat more generally

Suppose we have a nested sequence of models M1 ⊆ M2 ⊆ · · · , but the
distribution of the observed data, Po, doesn’t belong to any Mk.

We seek an approach that tolerates models that are “close enough” to Po.
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Wait, if the model is wrong, why not just fix it?

This is often impractical for a number of reasons.
▶ insufficient insight into the data generating process
▶ time and effort to design model + algorithms, and develop theory
▶ slower and more complicated to do inference
▶ complex models are less likely to be used in practice

Further, a simple model may be more appropriate, even if wrong.
▶ If there is a lack of fit, it may be due to contamination.
▶ Many models are idealizations that are known to be inexact, but have

interpretable parameters that provide insight into the questions of
interest.

▶ Often, the purpose of a model is to provide a lens through which to
understand the data, rather than just fitting it.

There are many reasons to prefer simple, interpretable, efficient models.
But we need a way to do inference that is robust to misspecification.
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Some work on Bayesian robustness

Gibbs posteriors (Jiang and Tanner, 2008)

nonparametric approaches (Rodŕıguez and Walker, 2014)

disparity-based posteriors (Hooker and Vidyashankar, 2014)

learning rate adjustment (Grünwald and van Ommen, 2014)

restricted posteriors (Lewis, MacEachern, and Lee, 2014)

neighborhood methods (Liu and Lindsay, 2009)

There are interesting connections between these methods and ours, but
our approach seems to be novel.
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Our proposal: Coarsened posterior

Assume a model {Pθ : θ ∈ Θ} and a prior π(θ).
Suppose θI ∈ Θ represents the idealized distribution of the data.

The interpretation here is that θI is the “true” state of nature about
which one is interested in making inferences.

Suppose X1, . . . , Xn i.i.d. ∼ PθI are unobserved idealized data.

However, the observed data x1, . . . , xn are actually a slightly
corrupted version of X1, . . . , Xn in the sense that d(P̂X1:n , P̂x1:n) < R
for some statistical distance d(·, ·).
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Our proposal: Coarsened posterior

If there were no corruption, then we should use the standard posterior

π(θ | X1:n = x1:n).

However, due to the corruption this would clearly be incorrect.

Instead, a natural Bayesian approach would be to condition on what
is known, giving us the coarsened posterior or c-posterior,

π(θ | d(P̂X1:n , P̂x1:n) < R).

Since R may be difficult to choose a priori, put a prior on it: R ∼ H.

More generally, consider

π
(
θ | dn(X1:n, x1:n) < R

)
where dn(X1:n, x1:n) ≥ 0 is some measure of the discrepancy between
X1:n and x1:n.
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Connection with ABC

The c-posterior π
(
θ | dn(X1:n, x1:n) < R

)
is mathematically

equivalent to the approximate posterior resulting from approximate
Bayesian computation (ABC).

Tavaré et al. (1997), Marjoram et al. (2003), Beaumont et al.
(2002), Wilkinson (2013)

However, there are some crucial distinctions:
▶ ABC is for intractable likelihoods, not robustness.
▶ We assume the likelihood is tractable, facilitating computation.
▶ For us, the c-posterior is an asset, not a liability.
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Pros/cons of c-posteriors

Pros

Robustness to small departures from the model.
▶ Inherits the continuity properties of the chosen statistical distance.

Coherent Bayesian inference based on limited information.
▶ Use the same model, but conditioned on a different event than usual.

Efficient computation in the case of relative entropy.
▶ C-posterior can be approximated by simply tempering the likelihood.

Simple asymptotic form, facilitating computation and analysis.

Cons

Sometimes less concentrated than one would like.
▶ e.g., if there is less misspecification than expected.
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Relative entropy c-posteriors

There are many possible choices of statistical distance . . .
▶ e.g., Kolmogorov–Smirnov, Wasserstein, maximum mean discrepancy,

various divergences

. . . but relative entropy works out exceptionally nicely.

Suppose dn(X1:n, x1:n) is a consistent estimator of D(po∥pθ) when
Xi

iid∼ pθ and xi
iid∼ po.

When R ∼ Exp(α), we have the power posterior approximation,

π
(
θ
∣∣ dn(X1:n, x1:n) < R

)
∝∼ π(θ)

n∏
i=1

pθ(xi)
ζn

where ζn = (1/n)/(1/n+ 1/α).

The power posterior enables inference using standard techniques:
▶ analytical solutions in the case of conjugate priors
▶ Gibbs sampling when using conditionally-conjugate priors
▶ Metropolis–Hastings MCMC, more generally
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How to choose the “precision” α?

Strategy #1. Set the mean neighborhood size ER = 1/α to match
the amount of misspecification we expect.

Strategy #2. Rule of thumb: to be robust to perturbations that
would require at least N samples to distinguish, set α ≈ N .

Strategy #3. Consider a range of α values, for sensitivity analysis or
exploratory analysis.
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Some work on power likelihoods

Power likelihoods of the form
∏n

i=1 pθ(xi)
ζ have been used previously.

Usually, this is done for reasons completely unrelated to robustness.
▶ marginal likelihood approximation (Friel and Pettitt, 2008)
▶ improved MCMC mixing (Geyer, 1991)
▶ consistency in nonparametrics (Walker and Hjort, 2001; Zhang, 2006a)
▶ discounting historical data (Ibrahim and Chen, 2000)
▶ objective Bayesian model selection (O’Hagan, 1995)

Grünwald and van Ommen (2014) found that a power posterior
improves robustness.

However, the form of power we use, and its theoretical justification,
seem novel.
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Toy example: Bernoulli trials

Model: X1, . . . , Xn|θ i.i.d. ∼ Bernoulli(θ)

Interested in testing H0 : θ = 1/2 versus H1 : θ ̸= 1/2.

Prior: π(H0) = π(H1) = 1/2, and θ|H1 ∼ Uniform(0, 1).

Standard posterior:

π
(
H0

∣∣X1:n = x1:n
)
= 1/

(
1 + 2nB(1 + nx, 1 + n(1− x))

)
Suppose, however, the observed data x1, . . . , xn is slightly corrupted.

Coarsened posterior:

π
(
H0

∣∣D(p̂x||p̂X) < R
)
≈ 1/

(
1 + 2αnB(1 + αnx, 1 + αn(1− x))

)
where αn = 1/(1/n+ 1/α) and R ∼ Exp(α).

What to choose for α?
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Toy example: Bernoulli trials

What to choose for α?

Use strategy #1: Set the mean neighborhood size ER = 1/α to
match the amount of misspecification we expect.

For example, suppose we expect the misspecification to affect x̄ by no
more than, say, ε = 0.02 when θ = 1/2.

By the chi-squared approximation to relative entropy, we have
D(p̂x||p̂X) ≈ 2|x̄− X̄|2 when x̄ and X̄ are near 1/2.

This suggests choosing α = 1/(2ε2) = 1/(2 · 0.022) = 1250.
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Toy example: Bernoulli trials
Suppose H0 is true, but x1, . . . , xn are corrupted and behave like Bernoulli(0.51)
samples. The c-posterior is robust to this, but the standard posterior is not.

What if the departure from H0 is significantly larger than our chosen tolerance of
ε = 0.02, e.g., if x1, . . . , xn are Bernoulli(0.56) samples? Does the c-posterior
more strongly favor H1 in such cases, as it should? Indeed, it does.
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Example: Gaussian mixture with a prior on k

Model: X1, . . . , Xn|k,w, φ i.i.d. ∼
∑k

i=1wifφi(x)

Prior π(k,w, φ) on # of components k, weights w, and params φ.

Relative entropy c-posterior is approximated by the power posterior,

π
(
k,w, φ

∣∣ dn(X1:n, x1:n) < R
)
∝∼ π(k,w, φ)

n∏
j=1

( k∑
i=1

wifφi(xj)
)ζn

where ζn = (1/n)/(1/n+ 1/α).

Could use Antoniano-Villalobos and Walker (2013) algorithm or
RJMCMC (Green, 1995). For simplicity, we reparametrize in a way
that allows the use of plain-vanilla Metropolis–Hastings.
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Gaussian mixture applied to skew-normal mixture data

Data: x1, . . . , xn i.i.d. ∼ 1
2SN (−4, 1, 5) + 1

2SN (−1, 2, 5), where
SN (ξ, s, a) is the skew-normal distribution with location ξ, scale s,
and shape a (Azzalini and Capitanio, 1999).

Use strategy #2: Choose α = 100, to be robust to perturbations to
Po that would require at least 100 samples to distinguish, roughly
speaking.
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Gaussian mixture applied to skew-normal mixture data
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Velocities of galaxies in the Shapley supercluster

Velocities of 4215 galaxies in a large concentration of
gravitationally-interacting galaxies (Drinkwater et al., 2004).

Gaussian mixture assumption is probably wrong.

Use strategy #3: By considering a range of α values, we can explore
the data at varying levels of precision.
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Velocities of galaxies in the Shapley supercluster
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Theory

We establish two main theoretical results:

1 the asymptotic form of c-posteriors as n → ∞, and

2 robustness of c-posteriors to perturbations of the data distribution.

Consider the model

θ ∼ Π

X1, . . . , Xn|θ i.i.d. ∼ Pθθθ

R ∈ [0,∞) independently of θ, X1:n.

Suppose the observed data x1, . . . , xn are sampled i.i.d. from some Po.
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Theory: Asymptotic form
Let G(r) = P(R > r).
Assume P(d(Pθθθ, Po) = R) = 0 and P(d(Pθθθ, Po) < R) > 0.

Theorem (Asymptotic form of c-posteriors)

If dn(X1:n, x1:n)
a.s.−−→ d(Pθθθ, Po) as n → ∞, then

Π
(
dθ | dn(X1:n, x1:n) < R

)
====⇒
n→∞

Π
(
dθ | d(Pθθθ, Po) < R

)
∝ G

(
d(Pθ, Po)

)
Π(dθ),

and in fact,

E
(
h(θ) | dn(X1:n, x1:n) < R

)
−−−→
n→∞

E
(
h(θ) | d(Pθθθ, Po) < R

)
=

Eh(θ)G
(
d(Pθθθ, Po)

)
EG

(
d(Pθθθ, Po)

)
for any h ∈ L1(Π).
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Theory: Lack of robustness of the standard posterior

The standard posterior can be strongly affected by small changes to
the observed data distribution Po, particularly when doing model
inference.

Roughly,

π(θ | x1:n) ∝ exp
( n∑

i=1

log pθ(xi)
)
π(θ)

≈ exp
(
n
∫
po log pθ

)
π(θ)

∝ exp(−nD(po∥pθ))π(θ).

Due to the n in the exponent, even a slight change to Po can
dramatically change the posterior.
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Theory: Lack of robustness of the standard posterior
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Theory: Robustness

Roughly, robustness means that small changes to the data
distribution result in small changes to the resulting inferences.

This can be formalized in terms of continuity with respect to Po.

The asymptotic c-posterior inherits the continuity properties of
whatever distance d(·, ·) is used to define it.

Theorem (Robustness of c-posteriors)

If P1, P2, . . . such that d(Pθ, Pm) −−−−→
m→∞

d(Pθ, Po) for Π-almost all θ ∈ Θ,

then for any h ∈ L1(Π),

E
(
h(θ) | d(Pθθθ, Pm) < R

)
−→ E

(
h(θ) | d(Pθθθ, Po) < R

)
as m → ∞, and in particular,

Π
(
dθ | d(Pθθθ, Pm) < R

)
=⇒ Π

(
dθ | d(Pθθθ, Po) < R

)
.
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Example: Autoregressive AR(k) model with a prior on k

Model: Xt =
∑k

ℓ=1 θℓXt−ℓ + εt where εt
iid∼ N (0, σ2).

Prior π(k) on k, and θ1, . . . , θk|k
iid∼ N (0, σ2

0). Assume σ2 known.

For time series, a natural choice of distance is relative entropy rate.

The c-posterior based on relative entropy rate estimates
dn(X1:n, x1:n) is again approximated by a power posterior,

∝ p(x1:n|θ, k)ζnπ(θ|k)π(k).

This leads to the coarsened marginal likelihood for k,

Lc(k;x1:n) :=

∫
Rk

p(x1:n|θ, k)ζnπ(θ|k)dθ

where ζn = (1/n)/(1/n+ 1/α).

This can be computed analytically, since θ|k has been given a
conjugate prior.
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Suppose the data is close to AR(4) but has time-varying noise:

xt =
1
4(xt−1 + xt−2 − xt−3 + xt−4) + εt +

1
2 sin t

where εt
iid∼ N (0, 1).

Log of marginal likelihood
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Example: Variable selection in linear regression

Spike-and-slab model:

W ∼ Beta(1, 2p)

βj ∼ N (0, σ2
0) with probability W, otherwise βj = 0, for j = 1, . . . , p

σ2 ∼ InvGamma(a, b)

Yi|β, σ2 ∼ N (βTxi, σ
2) independently for i = 1, . . . , n.

For regression, a natural choice of statistical distance is conditional
relative entropy. Again, this leads to a power posterior approximation
to the c-posterior:

π
(
β, σ2

∣∣ dn(Y1:n, y1:n) < R
)
∝∼ π(β, σ2)

n∏
i=1

p(yi|xi, β, σ2)ζn .

Since we are using conditionally-conjugate priors, the full conditionals
can be derived in closed-form, and we can use Gibbs sampling.
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Simulation example for variable selection
Covariates: xi1 = 1 to accomodate constant offset, and xi2, . . . , xi6
distributed according to a multivariate skew-normal distribution.

yi = −1 + 4(xi2 +
1
16x

2
i2) + εi where εi

iid∼ N (0, 1).

Set α = 50, using knowledge of the true amount of misspecification.
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Simulation example for variable selection

Posterior c.d.f. for each coefficient (blue), and 95% credible interval (red)

David Dunson, Duke University Robust Bayesian inference via coarsening



Modeling birthweight of infants

Pregnancy data from the Collaborative Perinatal Project.

We use a subset with n = 2379 subjects, and p = 72 covariates that
are potentially predictive of birthweight.

▶ e.g., body length, mother’s weight, gestation time, cigarettes/day
smoked by mother, previous pregnancy, etc.

Not sure how much misspecification there is, so we explore a range of
“precision” values α:

α ∈ {100, 500, 1000, 2000,∞}

which corresponds roughly to contamination of magnitude

δ ∈ {0.045, 0.02, 0.015, 0.01, 0} kilograms

by the formula for the relative entropy between Gaussians.
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Modeling birthweight of infants

Top variables: 1. Body length, 2. Mother’s weight at delivery,
3. Gestation time, 4. African-American, etc.
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Conclusion

The coarsened posterior (c-posterior) seems promising as a general
approach to robust Bayesian inference.

Pros

Robustness to small departures from the model.
▶ Inherits the continuity properties of the chosen statistical distance.

Coherent Bayesian inference based on limited information.
▶ Use the same model, but conditioned on a different event than usual.

Efficient computation in the case of relative entropy.
▶ C-posterior can be approximated by simply tempering the likelihood.

Simple asymptotic form, facilitating computation and analysis.

Cons

Sometimes less concentrated than one would like.
▶ e.g., if there is less misspecification than expected.
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