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Generalization in deep learning depends on the data.

We have no good way (yet) of modelling real data,
e.g., no notion of the complexity of data.

OTOH, empirical “neural scaling laws” predict performance
across wide ranges of data and model sizes.

What might neural scaling laws tell us about the complexity of the underlying data?
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Evidence for Complexity: A Toy Theory

Let r(θ) be the risk (say, probability of misclassification) of a predictor θ.

Let θ̂n be the predictor produced by our learning algorithm
given n training data
training a model of size m(n).

Theorem. For every data distribution µ, there exists a function Cµ(ε) such that, with high probability under µ⊗n,

r(θ̂n) ≤ inf
ε

{
ε+O

(√
ε · Cµ(ε)

n

)}
.

The “complexity” function C(ε) dictates risk rate:

if Cµ(ε) = O(polylog(ε−1)) then r(θ̂) = O(n−1)

if Cµ(ε) = O(ε−p) then r(θ̂) = O(n−1/(p+1))

if Cµ(ε) = O(exp(poly(ε−1))) then r(θ̂) = O(log−1 n).

Consequence: If scaling law for n data and size m(n) model
says risk decays slower than O(n−1/(p+1)), then... Cµ(ε) ̸∈ O(ε−p).

1. Such function Cµ(·) can be viewed as defining a notion of complexity of the data distribution µ.
2. Scaling laws can provide evidence of complexity, in view of upper bounds.
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Our Approach
We propose to measure the complexity of data in terms of ...

the size Cµ(ε) of the smallest network that achieves ε risk under µ.

Can be viewed as a rate–distortion function, specific to the data distribution
(Hafez-Kolahi, Moniri, Kasaei 2024; Hafez-Kolahi, Moniri et al. 2021)

Antipasti
▶ Study toy model of neural network training: a randomly initialized neural networks that fit the data.
▶ Assume that some “teacher” network has zero risk. (“realizable” setting)
▶ Conclusion (Buzaglo et al. ’24): Number of teacher parameters determines sample complexity.
▶ Caveat: We’ll quantize the weights (or need to introduce some notion of margin.)

Primi
▶ Study less toy model: sample from the Gibbs posterior ∝ exp{−βr̂n(θ) + dπ(θ)}.
▶ Drop assumption that some teacher network has zero risk. (“agnostic” setting)
▶ Conclusion: Number of teacher parameters determines sample complexity (for excess risk).
▶ Bonus: Nonvacuous bounds for MNIST.

Secondi
▶ Turn agnostic bound into an oracle inequality:

Risk of Gibbs posterior sample no more than any teacher’s risk plus a size penalty.
▶ Introduce C(ε) and rewrite bound, obtain infε{ε + ....C(ε)...} bound.
▶ Conclusion: Scaling laws suggest C(ε) ∈ ω(ε−p) for some p.

Dolce
▶ Don’t want teachers but distributions on teachers.
▶ Distributions avoid quantization/discretization. (Bits back encoding.) BONUS: New perspective on variational inference.
▶ Conclusion: C(ε) more complicated.
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Learning Setup

Labelled data: denoted by z, zi, Z, . . .

Predictors: identified with parameters, denoted by θ, θ̂, . . .

Loss: ℓ(θ, z), e.g., ℓ(θ, (x, y)) = I(network with weights θ on input x does not output label y)
Data distribution: µ, presumed unknown

Risk: r(θ) =

∫
ℓ(θ, z)µ(dz)

Data: S = (Z1, . . . , Zn) ∼ µ⊗n

Empirical Risk: r̂n(θ) =
1
n

∑n
i=1 ℓ(θ̂, zi)

Prior: distribution π on Θ, which is nonrandom.
Posterior: distribution ρ̂ on Θ, which may depend on S.
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Antipasti or prior work by Buzaglo, Harel, Nacson, Brutzkus, Srebro, Soudry (2024)
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Let Θ∗ = {θ ∈ Θ : r(θ∗) = 0}.

Assumption (realizability). There exists θ∗ ∈ Θ∗.
Assumption (finiteness). Θ is a finite set.
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Let Θ̂0 = {θ ∈ Θ : r̂n(θ) = 0} be the set of interpolating predictors (i.e., with zero empirical risk). Note: Θ̂0 ⊇ Θ∗.

We want a random element from Θ̂0. How?

Fix a probability measure π on Θ. Let θ ∼ π. If θ ∈ Θ̂0, accept and set θ̂ = θ. Otherwise, try again.

Distribution of θ̂ is the “posterior” ρ̂ = π( · | Θ̂0) given by ρ̂(A) =
π(A ∩ Θ̂0)

π(Θ̂0)
. Equivalently, dρ̂

dπ
(θ) =

I(θ ∈ Θ̂0)

π(Θ̂0)
.

So... what’s the risk of θ̂ sampled from the posterior ρ̂?
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π(Θ̂0)
. Equivalently, dρ̂

dπ
(θ) =

I(θ ∈ Θ̂0)

π(Θ̂0)
.

So... what’s the risk of θ̂ sampled from the posterior ρ̂?
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Background: PAC-Bayes Framework

Risk: r(θ) =

∫
ℓ(θ, z)µ(dz)

Data: S = (Z1, . . . , Zn) ∼ µ⊗n

Empirical Risk: r̂n(θ) =
1
n

∑n
i=1 ℓ(θ̂, zi)

Posterior: distribution ρ̂ on Θ, which may depend on S.
Prior: distribution π on Θ, which is nonrandom.

Let θ̂ be a sample from ρ̂. (That is, θ̂ | S ∼ ρ̂.)

PAC-Bayes offers comparisons for the random variables

r(θ̂) and r̂n(θ̂) and log dρ̂
dπ

(θ̂)︸ ︷︷ ︸
information density

Classical case controls expectations of these quantities under ρ̂.
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1
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∑n
i=1 ℓ(θ̂, zi)

Posterior: distribution ρ̂ on Θ, which may depend on S.
Prior: distribution π on Θ, which is nonrandom.

Theorem (Single sample bound; Catoni 2007)
Fix λ > 0. With probability at least 1− δ,

r(θ̂) ≤ Φ−1
λ/n

(
r̂n(θ̂) +

log dρ̂
dπ (θ̂) + log 1

δ

λ

)
where Φ−1

a (q) = (1− exp(−aq))/(1− exp(−a)).

How should we interpret Φ−1
λ/n

? inf
λ∈R+

Φ−1
λ/n

(
q +

d

λ

)
≤ q +

2d

n
+

√
2dq

n
, provided r.h.s. is less than 1/2.
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Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)
Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)
Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)
Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)
Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)

Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)
Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti with a side of PAC-Bayes

Recall: ρ̂ is posterior given interpolation, given by

dρ̂
dπ

(θ) =
I(θ ∈ Θ̂0)

π(Θ̂0)
.

By construction, r̂n(θ) = 0 and log dρ̂
dπ (θ) = log 1

π(Θ∗) for ρ̂-almost all θ.

What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?What’s the risk of θ̂ sampled from ρ̂?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)
Fix π and assume π-realizability. Let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤
log 1

π(Θ∗) + log 1
δ

n

Dziugiate & Roy 8 / 29



Antipasti: Buzaglo et al.’s lower bound on π(Θ∗), the probability of interpolating
For a network θ, let m(θ) be the smallest number of parameters we must specify to produce a network functionally
equivalent to θ.

student architecture teacher architecture

Note: m(θ) = # parameters in teacher network + # neurons in student network

Assumption (quantization). Weights of all networks are quantized into Q levels, and zero is one level.
Assumption (batch-norm-like init). Weights leaving each neuron are multiplied by a neuron-specific scaling weight.
Assumption (uniform prior). π is uniform distribution over all quantized student networks.

Second contribution of Buzaglo et al.
Let θ∗ ∈ Θ∗. Then log 1

π(Θ∗) = O(m(θ∗) logQ).
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Assumption (batch-norm-like init). Weights leaving each neuron are multiplied by a neuron-specific scaling weight.
Assumption (uniform prior). π is uniform distribution over all quantized student networks.

Second contribution of Buzaglo et al.
Let θ∗ ∈ Θ∗. Then log 1

π(Θ∗) = O(m(θ∗) logQ).
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Last bite of Antipasti: Final conclusion of Buzaglo et al.

Theorem (Buzaglo et al. 2024; Dziugaite & R. 2025)
Assume we have quantization, batch-norm-like init, a uniform prior π, and π-realizability.

Let m∗ = infθ∗∈Θ∗ m(θ∗) be the smallest teacher network in Θ∗.

Let S be n i.i.d. data and let θ̂ be a random interpolating network.
With probability at least 1− δ,

r(θ̂) ≤
m∗ logQ+ log 1

δ

n

Equivalently, if we have at least

n ≥
m∗ logQ+ log 1

δ

ε

samples, then r(θ̂) ≤ ε with probability at least 1− δ.
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Praise and Critiques of Buzaglo et al.

Nice observation that parametrization can induce “implicit bias”, even from “uniform” sampling.

On the other hand...
Student and teacher have the same depth.
The parametrization we exploited is not necessary for generalization.
Posterior sampling may not be a good model.
Realizability assumption not met in practice.
Quantization assumption doesn’t match practice, and is essential to the argument.
Predicts faster rate than seen empirically (in scaling laws).
Cannot explain performance as networks diverge in size.

We’ll start with realizability (which will see us rethink posterior sampling, rates, etc.).
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Primi: Gibbs Posterior

Non-realizable case means Θ∗ empty. Then possibly π(Θ̂0) = 0 with positive probability, hence... no posterior.

Gibbs posteriors allow us to model soft (stochastic) optimization and is well-defined in the non-realizable case.

Defn. The Gibbs posterior for a prior π on Θ, inverse temperature β > 0, and empirical risk r̂n under data S, is the
distribution ρ̂ on Θ dominated by π given by

dρ̂
dπ

(θ) =
1

Zπ
β (S)

exp{−β r̂n(θ)} ∝ exp{−β r̂n(θ)},

where Zπ
β (S) :=

∫
exp{−β r̂n(θ)}π(dθ) is the normalization constant.
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Primi: Some defense for the Gibbs Posterior

Gibbs posterior: dρ̂
dπ

(θ) =
1

Zπ
β (S)

exp{−β r̂n(θ)}

where Zπ
β (S) :=

∫
exp{−β r̂n(θ)}π(dθ).

Generalizes hard posterior. For fixed S, converges to (hard) posterior as inverse temperature β → ∞.
Related to gradient flow + noise. Assuming π is absolutely continuous with density p, the Gibbs posterior is the
stationary distribution of Langevin dynamics with drift βr̂n(θ) + log p(θ).
Related to SGD + noise + decaying stepsize. Gibbs posterior is also the limiting dynamics for Stochastic Gradient
Langevin Dynamics (SGD + noise) for decaying step sizes.
Related to SGD + noise + fixed step size in large data limit. The limiting OU process dynamics for SGLD and SGD
in fixed step size regimes, where data, # of total iterations diverges. (These results don’t cover high-dimensional case
yet, though.)
Gibbs posteriors optimize PAC-Bayes bounds. The Gibbs posteriors above arises as the solution to variational
problems: argminρ ρ(r̂n) + β−1KL(ρ||π).
That is, it minimizes certain PAC-Bayes bounds.
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Primi: Single-sample PAC-Bayes Bound for Gibbs Posterior

Gibbs posterior: dρ̂
dπ

(θ) =
1

Zπ
β (S)

exp{−β r̂n(θ)}

where Zπ
β (S) :=

∫
exp{−β r̂n(θ)}π(dθ) = π(exp{−βr̂n}).

Corollary
Let ρ̂ be the Gibbs posterior for π, inverse temperature β, and r̂n, and let θ̂ | S ∼ ρ̂. With probability at least 1− δ,

r(θ̂) ≤ Φ−1
λ/n

[
(1− λ−1β)r̂n(θ̂)− λ−1 log

(
Zπ
β (S)

)
+ λ−1 log 1

δ

]
.

If β ≥ λ,
r(θ̂) ≤ Φ−1

λ/n

[
− λ−1 log

(
Zπ
β (S)

)
+ λ−1 log 1

δ

]
.
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Primi: Back to Teachers
Taking inverse temperature β = λ, we have a risk bound

r(θ̂) ≤ Φ−1
λ/n

[
− λ−1 log

(
Zπ
λ (S)

)
+ λ−1 log 1

δ

]
.

We will see that this term is the analogue of λ−1 log 1
π(Θ∗) .

Teacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropyTeacher lower bound on local entropy

Let θ∗ ∈ Θ be an (arbitrary!) teacher. Let Eθ∗ = {θ ∈ Θ : θ∗ and θ have same minimal model}.

Zπ
λ (S) =

∫
exp{−λ r̂n(θ)}π(dθ) ≥ exp{−λ r̂n(θ

∗)}π(Eθ∗ ). (1)

Thus, the local entropy obeys

−λ−1 log
(
Zπ
λ (S)

)
≤ −λ−1 log

(
exp{−λ r̂n(θ

∗)}π(Eθ∗ )
)

(2)

= r̂n(θ
∗) + λ−1 log 1

π(Eθ∗ )
(3)

Indeed, the bound holds simultaneously for all θ∗ ∈ Θ∗, and so we have

−λ−1 log
(
Zπ
λ (S)

)
≤ inf

θ∗

{
r̂n(θ

∗) + λ−1 log 1

π(Eθ∗ )

}
(4)
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Primi: An oracle inequality

Key term is again log 1
π(Eθ∗ )

≤ m(θ∗) logQ, by the same argument as Buzaglo et al.

Take θ∗∗ ∈ argminθ∈Θ∗
{
r(θ∗) + λ−1m(θ∗) logQ

}
.

With probability at least 1− δ,

inf
θ∗∈Θ

{
r̂n(θ

∗) + λ−1m(θ∗) logQ
}

≤ r(θ∗∗) +O(
√

n−1 log 1/δ) + λ−1m(θ∗∗) logQ

≤ inf
θ∗∈Θ

{
r(θ∗) +O(

√
n−1 log 1/δ) + λ−1m(θ∗) logQ

}

Theorem
There exists λ > 0 such that, letting ρ̂ be the Gibbs posterior for π, inverse temperature λ, and r̂n, and letting θ̂ | S ∼ ρ̂,
with probability at least 1− δ,

r(θ̂) ≤ inf
θ∗∈Θ

O

(
r(θ∗) +

√
m(θ∗) logQ+ log 1/δ

n

)
Can get a bound of the form r + c

n
+

√
rc
n

too.
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Primi: Toy MNIST Experiment

We validate our bounds on the MNIST dataset.

Experimental setup:
2-layer MLP with 3 hidden units (3167 parameters)
Trained on MNIST dataset
Obtained θ∗ with 0.145 risk
Fast rate bound yields 0.374 risk had we been able to quantize to 4-bits... but we haven’t tried.

Dziugiate & Roy 17 / 29



Primi: Takeaways

This bound balances teacher risk and complexity.

Key implications:
Shifting to Gibbs posteriors allowed us to handle non-zero approximation error
Provides insights into the trade-off between model complexity and fit

Dziugiate & Roy 18 / 29



Secondi: Introducing C(ε)

Our oracle inequality doesn’t tell us how risk behaves as we get more data.
We propose a new measure of data complexity based on teacher network size.

Defn. Let r∗ is the Bayes error rate. Define

C(ε) = inf
θ∗∈Θ

m(θ∗)

s.t. r(θ∗)− r∗ ≤ ε

Reflects the minimal network size needed for a given approximation error ε
Monotonically increasing in ε

Example of a rate–distortion function, up to some approximation.
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Secondi: A bound with C(ε)

Theorem
There exists λ > 0 such that, letting ρ̂ be the Gibbs posterior for π, inverse temperature λ, and r̂n, and letting θ̂ | S ∼ ρ̂,
with probability at least 1− δ,

r(θ̂) ≤ inf
ε
O

(
ε+

√
εC(ε) logQ+ log 1/δ

n

)
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Secondi: Interpreting C(ε)

r(θ̂) ≤ inf
ε
O

(
ε+

√
εC(ε) logQ+ log 1/δ

n

)

The “complexity” function C(ε) dictates risk rate:

if C(ε) = O(polylog(ε−1)) then r(θ̂) = O(n−1)

if C(ε) = O(ε−p) then r(θ̂) = O(n−1/(p+1))

if C(ε) = O(exp(poly(ε−1))) then r(θ̂) = O(log−1 n).

Consequence: If scaling law for n data and size m(n) model
says risk decays slower than O(n−1/(p+1)), then... C(ε) ̸∈ O(ε−p).
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Scaling laws for C(ε) = ε−9.
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Risk bounds for fixed compute, for C(ε) = ε−9.
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Compute constrained risk for C(ε) = (1/ε)^p for p=0.5, compute budget=2.1544346900318955e+23, and Bayes error rate=0.0
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Compute optimal scaling laws for C(ε) = ε−9.

Dziugiate & Roy 24 / 29



Dolce: Stochastic teachers

Donsker–Varadhan offers a more sophisticated lower bound on local entropy.

−λ−1 log
(
Zπ
λ (S)

)
= inf

ρ
ρ(r̂n) + λ−1KL(ρ||π) (5)

Theorem
There exists λ > 0 such that, letting ρ̂ be the Gibbs posterior for π, inverse temperature λ, and r̂n, and letting θ̂ | S ∼ ρ̂,
with probability at least 1− δ,

r(θ̂) ≤ inf
ρ∗∈∆(Θ)

O

(
ρ(r) +

√
KL(ρ||π) + log 1/δ

n

)

Every PAC-Bayes bound (regardless of the predictor) offers a risk bound for the Gibbs posterior-sampled predictor.
Offers an explicit connection with coding. Cf. C(ε) as minimal teacher size.
For analysis, we could potentially look to Hessians/flatness (Yang, Mao, Chaudhari 2022). Cf. Dziugaite & Roy 2017.
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Key Insights

Our work bridges theory and practice in deep learning generalization.

Main contributions:
Theoretical explanation for generalization in (mildly) overparameterized models
Novel measure of data complexity via teacher network size
Insights into the role of data complexity in learning
Numerical scaling laws offer us evidence of complexity via excess risk upper bounds
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Limitations

Our work has some limitations that offer opportunities for future research.

Current limitations:
Naive approach to lower bounding probability of interpolation
Bounds tightest when student size doesn’t exceed teacher size
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Conclusion

We’ve introduced a novel perspective on data complexity in deep learning.

Key contributions:
Novel measure of data complexity based on teacher network size
Non-vacuous generalization bounds for neural networks
Connection between theoretical bounds and empirical scaling laws

Dziugiate & Roy 28 / 29


	Introduction
	Background
	Data Complexity Measure
	Discussion
	Conclusion

