The Size of Teachers as a Measure of Data Complexity
PAC-Bayes Excess Risk Bounds and Scaling Laws for Neural Networks

Gintare Karolina Dziugaite (Google Deepmind)

Daniel M. Roy (U of Toronto; Vector Institute)

Post-Bayes Online Seminar







Generalization in deep learning depends on the data.




Generalization in deep learning depends on the data.

We have no good way (yet) of modelling real data,
e.g., ho notion of the complexity of data.

Dziugiate & Roy 2/29



Generalization in deep learning depends on the data.

We have no good way (yet) of modelling real data,
e.g., ho notion of the complexity of data.

OTOH, empirical “neural scaling laws” predict performance
across wide ranges of data and model sizes.

Dziugiate & Roy 2/29



Generalization in deep learning depends on the data.

We have no good way (yet) of modelling real data,
e.g., ho notion of the complexity of data.

OTOH, empirical “neural scaling laws” predict performance

across wide ranges of data and model sizes.

What might neural scaling laws tell us about the complexity of the underlying data?
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Theorem. For every data distribution ., there exists a function C,, () such that, with high probability under p®™,
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The “complexity” function C'(¢) dictates risk rate:

if C\,() = O(polylog(e 1)) then 7(0) = O(n™1)
if Cu(e) = O(e™P) then r(6) = O(n~Y/(P+1)
if C,,(e) = O(exp(poly(e™1)))  then r(d) = O(log™! n).

Consequence: If scaling law for n data and size m(n) model
says risk decays slower than O(n =1/ (1)) then... C,,(c) & O(e~?).

1. Such function C,, (-) can be viewed as defining a notion of complexity of the data distribution ..
2. Scaling laws can provide evidence of complexity, in view of upper bounds.
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Learning Setup

Labelled data:

Predictors:
Loss:
Data distribution:

Risk:
Data:
Empirical Risk:

Prior:
Posterior:

Dziugiate & Roy

denoted by z,z;, Z, ...

identified with parameters, denoted by 6,9, . ..

£(0, 2), e.g., £(0, (z,y)) = I(network with weights 6 on input = does not output label y)
1, presumed unknown

w(0) = [ 46, 2)n(d2)
S=(Z1,...,2n) ~ p®"

Pn(8) = £ 307, 46, %)

distribution = on ©, which is nonrandom.
distribution p on ©, which may depend on S.
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Buzaglo et al.’s assumptions

Let©* = {0 € © : r(6*) = 0}.
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Let©* = {0 € © : r(6*) = 0}.

Assumption (realizability). There exists 6* € ©*.
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Let ©g = {6 € © : #,(0) = 0} be the set of interpolating predictors (i.e., with zero empirical risk). Note: 60 D O*.
We want a random element from ©4. How?
Fix a probability measure m on ©. Let § ~ . If § € Oy, accept and set § = 6. Otherwise, try again.

M_ Equiva|ent|y’ dl(e) = M

Distribution of 6 is the “posterior” p = =(- | © iven by p(A) = = =
p p=m(-100)g y p(A) () = (o)

So... what's the risk of § sampled from the posterior p?
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v(0) = [ 66, 2u(a)

S=(Z1,...,2Zn) ~ p®"

Pn(0) = £ 3070, 40, 2:)

distribution p on ©, which may depend on S.
distribution = on ©, which is nonrandom.

Theorem (Single sample bound; Catoni 2007)

Fix X > 0. With probability at least 1 — 6,

db () + log
A

A A lo
() < 85, (70(0) + 225
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Posterior: distribution p on ©, which may depend on S.
Prior: distribution = on ©, which is nonrandom.

Theorem (Single sample bound; Catoni 2007)
Fix X > 0. With probability at least 1 — 6,

log dp () + log 5

) where 8 (0) = (1 exp(~a0))/(1 — exp(~a).

r(é)<<1> a <rn(9)

2d 2d
How should we interpret <I>;1 ? inf & ! (q + ) <g+—+ —q, provided r.h.s. is less than 1/2.
n A/n n n

/ AER,
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Assume 7,(9) = 0 a.s. under § | S ~ p.

r(0) = /8(0, z)u(dz)
S=(Z1,...,Zn) N/'L®n
F(0) = LS 06, 2)

distribution p on ©, which may depend on S.

distribution = on ©, which is nonrandom.

Dziugiate & Roy

7/29



Background: PAC-Bayes Framework

Risk:
Data:
Empirical Risk:

Posterior:
Prior:

Corollary

v(0) = [ 66, 2u(a)

S=(Z1,...,2Zn) ~ p®"

Pn(0) = £ 3070, 40, 2:)

distribution p on ©, which may depend on S.
distribution = on ©, which is nonrandom.

Assume 7, () = 0 a.s. under § | S ~ p. With probability at least 1 — 6,

. log 22 (f) + log *
r(6) < og 42 (0) +log 5

n
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dr 7(60)

By construction, 7, (0) = 0 and log %(0) = log W for p-almost all 6.

What's the risk of § sampled from 5?

Lemma (Risk of posterior sampling; Dziugaite & R. 2025)

Fix 7 and assume m-realizability. Let § | S ~ p. With probability at least 1 — 4,

log ﬁ +log }

n

r(0) <
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For a network 6, let m () be the smallest number of parameters we must specify to produce a network functionally
equivalent to 6.

0 dq da do d?l{ d§
‘ )
v
ds
student architecture teacher architecture

Note: m(0) = # parameters in teacher network + # neurons in student network

Assumption (quantization). Weights of all networks are quantized into @ levels, and zero is one level.
Assumption (batch-norm-like init). Weights leaving each neuron are multiplied by a neuron-specific scaling weight.
Assumption (uniform prior). 7 is uniform distribution over all quantized student networks.

Second contribution of Buzaglo et al.
Let 6* € ©*. Then log W = O(m(6*)log Q).
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Last bite of Antipasti: Final conclusion of Buzaglo et al.

Theorem (Buzaglo et al. 2024; Dziugaite & R. 2025)

Assume we have quantization, batch-norm-like init, a uniform prior =, and r-realizability.
Let m* = infg« co+ m(0*) be the smallest teacher network in ©*.

Let S be n i.i.d. data and let § be a random interpolating network.

With probability at least 1 — 4,

m* logQ + log %
n

r(d) <

Equivalently, if we have at least
- m* log Q + log +

(>

samples, then r(6) < e with probability at least 1 — 6.
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Praise and Critiques of Buzaglo et al.

Nice observation that parametrization can induce “implicit bias”, even from “uniform” sampling.

On the other hand...
@ Student and teacher have the same depth.
@ The parametrization we exploited is not necessary for generalization.
@ Posterior sampling may not be a good model.
@ Realizability assumption not met in practice.
@ Quantization assumption doesn’t match practice, and is essential to the argument.
@ Predicts faster rate than seen empirically (in scaling laws).
@ Cannot explain performance as networks diverge in size.

We’ll start with realizability (which will see us rethink posterior sampling, rates, etc.).
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Primi: Gibbs Posterior

Non-realizable case means ©* empty. Then possibly n(éo) = 0 with positive probability, hence... no posterior.

Gibbs posteriors allow us to model soft (stochastic) optimization and is well-defined in the non-realizable case.

Defn. The Gibbs posterior for a prior w on O, inverse temperature 8 > 0, and empirical risk 7,, under data .S, is the
distribution p on ® dominated by = given by

L4 =

> exp{—B7n(0)} ox exp{~B 71 (0)},

Z5(S)

where ZZ (5) := J exp{—pB#n(0)}m(db) is the normalization constant.
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Primi: Some defense for the Gibbs Posterior

Gibbs posterior: d—p(e) =
dr Zg(S)

exp{—B7.(0)}

where Z7(S) = / exXp{—B #n (6)}7(d0).

@ Generalizes hard posterior. For fixed S, converges to (hard) posterior as inverse temperature 8 — co.

@ Related to gradient flow + noise. Assuming = is absolutely continuous with density p, the Gibbs posterior is the
stationary distribution of Langevin dynamics with drift 37, (6) + log p(9).

@ Related to SGD + noise + decaying stepsize. Gibbs posterior is also the limiting dynamics for Stochastic Gradient
Langevin Dynamics (SGD + noise) for decaying step sizes.

@ Related to SGD + noise + fixed step size in large data limit. The limiting OU process dynamics for SGLD and SGD
in fixed step size regimes, where data, # of total iterations diverges. (These results don’t cover high-dimensional case
yet, though.)

@ Gibbs posteriors optimize PAC-Bayes bounds. The Gibbs posteriors above arises as the solution to variational
problems: argmin, p(#) + 8~ 1K L(p|| ).

That is, it minimizes certain PAC-Bayes bounds.
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Primi: Single-sample PAC-Bayes Bound for Gibbs Posterior

Gibbs posterior: g—p(e) exp{—0B7n(0)}
T

~Z5(S)

where Z3(S) := /exp{—ﬁ 7n(0)}7(dO) = 7(exp{—L7n}).

Corollary

Let p be the Gibbs posterior for «, inverse temperature 3, and 7, and let 6 | S ~ p. With probability at least 1 — 9,
N _ PP _ - _ 1
r(6) < @3}, [(1 — A"1B)#n(0) — A tlog (25(S)) + A~ log g]~

Ifg =X

r(d) < @3, [ — X" tlog (Z5(S)) + A~ " log %}
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Primi: Back to Teachers
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Primi: Back to Teachers

Taking inverse temperature 5 = X, we have a risk bound
A 1
r(0) < @;}n [ —A"tlog (25 (S)) + A tlog 3]'

We will see that this term is the analogue of A~ log ﬁ.

Teacher lower bound on local entropy

Let 6* € © be an (arbitrary!) teacher. Let Ey« = {6 € © : 6* and 6 have same minimal model}.
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A 1
r(0) < @;}n [ —A"tlog (25 (S)) + A tlog 3]'

We will see that this term is the analogue of A~ log ﬁ.

Teacher lower bound on local entropy

Let 6* € © be an (arbitrary!) teacher. Let Ey« = {6 € © : 6* and 6 have same minimal model}.

Z5(S) = /exp{—)\fn(ﬁ)}w(de) > exp{—A7n(0")} 7(Eo- ).

Thus, the local entropy obeys

=A"tlog (Z5(S)) < —A"tlog (exp{—A7n(6%)} m(Ee~))

=7, (0%)+ A" tlog )

Indeed, the bound holds simultaneously for all 6* € ©*, and so we have

_ T i P * B :
—2~Llog (Z)\(S)) gg\*f{rn(ﬁ )+ A Llog W(EG*)}
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Key term is again log #W < m(6*)log Q, by the same argument as Buzaglo et al.

Take 6** € arg mingc o~ {r(@*) + A7 Im(6*) log Q}.
With probability at least 1 — 4,
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T 0*co

inf
6*cO

16/29

Dziugiate & Roy



Primi: An oracle inequality

Key term is again log #6*) < m(6*)log Q, by the same argument as Buzaglo et al.
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Key term is again log ﬂ(#*) < m(6*)log Q, by the same argument as Buzaglo et al.
Take 6** € arg mingc o~ {r(@*) + A7 Im(6*) log Q}.

With probability at least 1 — 4,

inf fn(e*)+,\*1m(e*)|ogcg}gr(e**)+0( n=llog1/8) + A~ 1m(6**)log Q

60*coO
< inf_ {r(e*) +0(y/n=110g1/8) + A~ 1m(6") log Q}

Theorem
There exists \ > 0 such that, letting p be the Gibbs posterior for m, inverse temperature )\, and 7, and letting 6 | S~ p

with probability at least 1 — ¢,
r(6) < pinf O(r(@*) 4 \/m(9 )log Q +log1/5 )
*e

n

Can get a bound of the form r + = + , /< too.

Dziugiate & Roy 16/29




Primi: Toy MNIST Experiment

We validate our bounds on the MNIST dataset.

Experimental setup:
@ 2-layer MLP with 3 hidden units (3167 parameters)
@ Trained on MNIST dataset
@ Obtained 6* with 0.145 risk
@ Fast rate bound yields 0.374 risk had we been able to quantize to 4-bits... but we haven't tried.
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Primi: Takeaways

This bound balances teacher risk and complexity.
Key implications:

@ Shifting to Gibbs posteriors allowed us to handle non-zero approximation error
@ Provides insights into the trade-off between model complexity and fit
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Secondi: Introducing C(¢)

Our oracle inequality doesn’t tell us how risk behaves as we get more data.
We propose a new measure of data complexity based on teacher network size.
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Secondi: Introducing C(¢)

Our oracle inequality doesn’t tell us how risk behaves as we get more data.

We propose a new measure of data complexity based on teacher network size.

Defn. Let r* is the Bayes error rate. Define
= inf 0*
C(e) 0126 m(6™)

st r(0*)—r*<e

@ Reflects the minimal network size needed for a given approximation error ¢

@ Monotonically increasing in e
@ Example of a rate—distortion function, up to some approximation.
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Scaling laws for C(g) = 7.
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Risk bounds for fixed compute, for C(¢) = e .

Compute constrained risk for C(e) = (1/e)"p for p=0.5, compute budget=2.1544346900318955e+23, and Bayes error rate=0.0
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Compute optimal scaling laws for C(e) = 7.
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Donsker-Varadhan offers a more sophisticated lower bound on local entropy.

-X"tlog (25 (S)) = ir;fp(fn) + ALK L(p||n) (5)

Theorem

There exists \ > 0 such that, letting p be the Gibbs posterior for =, inverse temperature )\, and 7, and letting 0 | S~ p

with probability at least 1 — ¢,
r(é) < inf O(p(r) + \/—KL(pr) +log1/o )
p*EN(O) n

@ Every PAC-Bayes bound (regardless of the predictor) offers a risk bound for the Gibbs posterior-sampled predictor.

@ Offers an explicit connection with coding. Cf. C(e) as minimal teacher size.
@ For analysis, we could potentially look to Hessians/flatness (Yang, Mao, Chaudhari 2022). Cf. Dziugaite & Roy 2017.
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Key Insights

Our work bridges theory and practice in deep learning generalization.

Main contributions:
@ Theoretical explanation for generalization in (mildly) overparameterized models
@ Novel measure of data complexity via teacher network size
@ Insights into the role of data complexity in learning
@ Numerical scaling laws offer us evidence of complexity via excess risk upper bounds
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Limitations

Our work has some limitations that offer opportunities for future research.
Current limitations:

@ Naive approach to lower bounding probability of interpolation
@ Bounds tightest when student size doesn’t exceed teacher size
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Conclusion

We've introduced a novel perspective on data complexity in deep learning.

Key contributions:
@ Novel measure of data complexity based on teacher network size
@ Non-vacuous generalization bounds for neural networks
@ Connection between theoretical bounds and empirical scaling laws
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