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“model” ̸= “statistical model”

Different communities use different conventions and standards in defining a “model”:

▶ discrete/continuous;

▶ deterministic/stochastic;

▶ based on mathematical equations/computer simulation;
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▶ based on mathematical equations/computer simulation;

▶ · · ·

Focus on deterministic models
Mθ : X → Y

with parameters denoted θ ∈ Θ.

Challenge: How to use such a “model” for statistical inference and (causal)
prediction?

Usual Solution: Turn the “model” Mθ into a “statistical model”

Pθ : yi = Mθ(xi ) + ϵi , ϵi
iid∼ N (0, σ2I )

using knowledge of the equipment used to make the measurement.

Unfortunately a good “model” can lead to a misspecified “statistical model”...
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Model Misspecification in Cell Signalling
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Figure: ERK signalling model.

Systems biology has invested decades of
effort into the design of detailed ODE
descriptions of cellular signalling pathways,
with thousands of models hosted on
repositories such as BioModels
[Malik-Sheriff et al., 2020].

e.g. ERK signalling is modelled as

du

dx
= fθ(x , u), θ ∈ R11

Data are (reasonably, as far as this talk is
concerned) treated as noisy observations of
molecular concentrations u(x) at discrete
times x1:n.
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Figure: Posterior predictive for the ERK signalling model.



Model Misspecification in Cell Signalling

0.5

1.0

1.5

2.0

Raf1

0.5

1.0

1.5

2.0

2.5

RKIP

0.0

0.2

0.4

0.6
Raf1 RKIP

0.0

0.5

1.0

1.5

Raf1 RKIP ERKPP

0.00

0.01

0.02

0.03

ERK

0.000

0.005

0.010

0.015

0.020

RKIPP

1.8

2.0

2.2

2.4

MEKPP

0.0

0.2

0.4

0.6

MEKPP ERK

1

2

ERKPP

2.94

2.96

2.98

3.00

RP

0.00

0.02

0.04

0.06

RKIPP RP

0 50
0.0

0.5

1.0

1.5

2.0

0 50
0.5

1.0

1.5

2.0

2.5

0 50

0.00

0.25

0.50

0.75

1.00

0 50

0.0

0.5

1.0

1.5

0 50

0.0

0.5

1.0

0 50

0.000

0.005

0.010

0.015

0.020

0 50

2.2

2.3

2.4

2.5

0 50

0.0

0.1

0.2

0.3

0 50

0

1

2

0 50

2.94

2.96

2.98

3.00

0 50

0.00

0.02

0.04

0.06

ground truth

observation

predictive meanB
ay

es

Figure: Posterior predictive for the ERK signalling model.



Model Misspecification in Cell Signalling

0.5

1.0

1.5

2.0

Raf1

0.5

1.0

1.5

2.0

2.5

RKIP

0.0

0.2

0.4

0.6
Raf1 RKIP

0.0

0.5

1.0

1.5

Raf1 RKIP ERKPP

0.00

0.01

0.02

0.03

ERK

0.000

0.005

0.010

0.015

0.020

RKIPP

1.8

2.0

2.2

2.4

MEKPP

0.0

0.2

0.4

0.6

MEKPP ERK

1

2

ERKPP

2.94

2.96

2.98

3.00

RP

0.00

0.02

0.04

0.06

RKIPP RP

0 50
0.0

0.5

1.0

1.5

2.0

0 50
0.5

1.0

1.5

2.0

2.5

0 50

0.00

0.25

0.50

0.75

1.00

0 50

0.0

0.5

1.0

1.5

0 50

0.0

0.5

1.0

0 50

0.000

0.005

0.010

0.015

0.020

0 50

2.2

2.3

2.4

2.5

0 50

0.0

0.1

0.2

0.3

0 50

0

1

2

0 50

2.94

2.96

2.98

3.00

0 50

0.00

0.02

0.04

0.06

ground truth

observation

predictive meanB
ay

es

Figure: Posterior predictive for the ERK signalling model.



TL/DR: Better Bayesian Inference Does Not Help

Bayesian inference for misspecified models has been widely studied.

e.g. Kennedy and O’Hagan [2001]:

▶ parameter θ ∈ Θ

▶ IID data y1:n = (y1, . . . , yn) ∈ Yn

▶ misspecified model Mθ : X → Y
▶ the residual R : X → Y (difference between real world and model)

▶ prior for the residual, e.g. R ∼ GP
▶ augmented statistical model, e.g.

yi = Mθ(xi )︸ ︷︷ ︸
“model”

+ R(xi )︸ ︷︷ ︸
residual

+ϵi , ϵi
iid∼ N (0, σ2I )

Limitations

▶ high data requirement to learn the residual R;

▶ causal prediction impossible in this framework.
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TL/DR: Generalised Bayesian Inference is a Bit Complicated

Generalisations of Bayesian inference have been proposed for when the model is
misspecified.

e.g. generalised Bayesian inference [Bissiri et al., 2016, Knoblauch et al., 2022]:

▶ parameter θ ∈ Θ

▶ IID data y1:n = (y1, . . . , yn) ∈ Yn

▶ loss function Ln : Θ× Yn → R
▶ prior Q0 ∈ P(Θ)

▶ generalised posterior

Q†
n = argmin

Q∈P(Θ)

∫
Ln(θ, y1:n) dQ(θ)︸ ︷︷ ︸
average data fit

+λn KL(Q,Q0)︸ ︷︷ ︸
regularisation

.

Recovering Standard Bayes
Standard Bayes has Ln(θ, y1:n) = − log pθ(y1:n) and λn = 1.
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Other Choices of Ln and λn

For various other choices of Ln and λn, generalised Bayesian methods can produce
robust posteriors suitable for dealing with certain forms of statistical model
misspecification [see Hooker and Vidyashankar, 2014, Ghosh and Basu, 2016,
Knoblauch et al., 2018, Schmon et al., 2020, Chérief-Abdellatif and Alquier, 2020,
Dellaporta et al., 2022, Husain and Knoblauch, 2022, Altamirano et al., 2023, 2024,
Duran-Martin et al., 2024].
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Concentration of Generalised Posterior
For convenient choices of Ln and λn, the magnitude of the data-fit term generally

increases with n. As a result, Q†
n → δθ† [Miller, 2021].

So need to tune the learning rate...
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average data fit
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Tuning the Learning Rate
Several ideas have been proposed to select the learning rate λn - c.f. Ryan Martin’s
talk. But these involve approximations and/or can be computationally demanding.

Tuning the learning rate is complicated - seek alternative to generalised Bayes...?



Prediction-Centric Alternatives

Setting Given a model Pθ that is useful (e.g. for causal prediction) but misspecified.

Step 1: Mitigate Misspecification Form a mixture model

PQ =

∫
Pθ dQ(θ) ∈ P(Y).

Step 2: Learn Q For example, by matching the predictive distribution of PQ to the
dataset.

Example: Nonparametric Maximum Likelihood
This approach solves

argmin
Q∈P(Θ)

−
1

n

n∑
i=1

log pQ(yi )

where pQ is a density for the mixture model PQ [see Chapter 5 of Lindsay, 1995].

▶ approximates KL(P⋆,PQ) when y1:n is a collection of n independent samples from
P⋆ ∈ P(Y)

▶ lack of regularisation causes computational difficulties and non-identifiability [see
e.g. Laird, 1978], as the minimising measure will generally be fully atomic, see
Lindsay [1995, e.g. Theorem 21 in Chapter 5] and Jordan-Squire [2015].
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α) + λn KL(Q,Q0).

▶ the choice λn = α
n

can be linked to approximation of the standard Bayesian
posterior via α-divergences Li and Gal [2017], Villacampa-Calvo and
Hernandez-Lobato [2020]

▶ considered in the context of Gaussian processes and deep Gaussian processes with
α = 1 and various choices for λn Jankowiak et al. [2020a,b], Sheth and Khardon
[2020].
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▶ predictive fit assessed using log-predictive density (or any proper scoring rule)

▶ regularisation is toward the standard Bayesian posterior Q†
n

▶ for computation, parametric VI is used.
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Prediction-Centric Uncertainty Quantification

Our Take: Prediction-Centric Uncertainty Quantification (PCUQ).

Joint work with Zheyang Shen (Newcastle), Jeremias Knoblauch (UCL), and Sam
Power (Bristol)

▶ (for now) IID data y1:n = (y1, . . . , yn) ∈ Yn

▶ empirical measure of the dataset Pn = 1
n

∑n
i=1 δyi

▶ mixture model PQ =
∫
Pθ dQ(θ) ∈ P(Y)

▶ prediction-centric posterior

Qn = argmin
Q∈P(Θ)

1

2
MMD2(Pn,PQ)︸ ︷︷ ︸

predictive fit

+λn KL(Q,Q0)︸ ︷︷ ︸
regularisation

Measuring Predictive Fit
The use of maximum mean discrepancy (MMD) [see e.g. Gretton et al., 2012], as
opposed to other statistical divergences, confers outlier-robustness to PCUQ, which
may be valuable in the misspecified context, and carries computational advantages,
enabling the use of powerful emerging sampling methods based on gradient flows
[Wild et al., 2023].
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Regularisation Target

Q0 acts on Qn in essentially the same way that Q0 acts on Gibbs measures like Q†
n , as

a reference measure in a Radon–Nikodym derivative [Bissiri et al., 2016, Knoblauch
et al., 2022]. That is, once can reason about ‘updating belief distributions’ using
PCUQ.
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+λn KL(Q,Q0)︸ ︷︷ ︸
regularisation

Learning Rate
Compared to generalised Bayes, PCUQ depends less critically on the learning rate
λn. i.e. support of Qn is not a singleton set when λn → 0.
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Figure: PCUQ predictive for the ERK signalling model.
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A Bit More Detail



Predictive Fit via MMD

To define the predictive fit for PCUQ, we need:

▶ kernel k : Y × Y → R, e.g. k(y , y ′) = (yy ′) + (yy ′)2

▶ reproducing kernel Hilbert space (RKHS) H(k) [see Berlinet and Thomas-Agnan,
2011, for background]

▶ kernel mean embedding

µk (P) :=

∫
k(·, y) dP(y) ∈ H(k).

The divergence of a candidate P ∈ P(Y) from the data-generating distribution P⋆ can
be quantified using maximum mean discrepancy (MMD):

MMD(P⋆,P) = ∥µk (P⋆)− µk (P)∥H(k)

e.g.=

∥∥∥∥[ EY∼P⋆ [Y ]
EY∼P⋆ [Y

2]

]
−
[

EY∼P [Y ]
EY∼P [Y

2]

]∥∥∥∥
The MMD is a proper metric if k is a characteristic kernel [Sriperumbudur et al.,
2011]; our use of MMD is justified by its interpretation as a statistical divergence
induced by a proper scoring rule [Dawid, 1986].
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Predictive Fit via MMD

The mixture model PQ has kernel mean embedding

µk (PQ) =

∫∫
k(·, y) dPθ(y)dQ(θ) =

∫
µk (Pθ) dQ(θ),

so the MMD between P⋆ and PQ can be written as

MMD2(P⋆,PQ) =

∥∥∥∥∫ {µk (P⋆)− µk (Pθ)} dQ(θ)

∥∥∥∥2
H(k)

=

∫∫
κP⋆ (θ, ϑ) dQ(θ)dQ(ϑ), (1)

where κP⋆ : Θ×Θ → R is a kernel on Θ, and given by

κP⋆ (θ, ϑ) = ⟨µk (P⋆)− µk (Pθ), µk (P⋆)− µk (Pϑ)⟩H(k) .

Interpretation as Kernel Stein Discrepancy
This reveals one possible interpretation of (1) as a kernel Stein discrepancy
[Chwialkowski et al., 2016, Liu et al., 2016, Gorham and Mackey, 2017] corresponding
to the Stein kernel κP⋆ [Oates et al., 2017].
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The mixture model PQ has kernel mean embedding
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where κP⋆ : Θ×Θ → R is a kernel on Θ, and given by

κP⋆ (θ, ϑ) = ⟨µk (P⋆)− µk (Pθ), µk (P⋆)− µk (Pϑ)⟩H(k) .

Sensible in the Well-Specified Context
If P⋆ = Pθ⋆ for some unique θ⋆ ∈ Θ, then (1) is uniquely minimised by Q = δθ⋆
provided k is a characteristic kernel.
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The mixture model PQ has kernel mean embedding

µk (PQ) =
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where κP⋆ : Θ×Θ → R is a kernel on Θ, and given by

κP⋆ (θ, ϑ) = ⟨µk (P⋆)− µk (Pθ), µk (P⋆)− µk (Pϑ)⟩H(k) .

Estimation
Of course, the true data-generating distribution P⋆ in (1) is unknown and must be
approximated. In PCUQ we use the empirical distribution Pn in lieu of P⋆.
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The mixture model PQ has kernel mean embedding
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where κP⋆ : Θ×Θ → R is a kernel on Θ, and given by

κP⋆ (θ, ϑ) = ⟨µk (P⋆)− µk (Pθ), µk (P⋆)− µk (Pϑ)⟩H(k) .

Regularisation
A plug-in approximation necessitates additional regularisation, since otherwise
minimisation of Q 7→ MMD(Pn,PQ) would result in a discrete distribution where each
atom corresponds to a value of θ that explains one of the data points well.



Approximating Qn via Gradient Flow

The output Qn of PCUQ is a minimiser of the entropy-regularised objective

Fn(Q) = En(Q) + λn

∫
log q(θ) dQ(θ), (2)

where the free energy En(Q) is identical, after algebraic manipulation, to

En(Q)
+C
=

∫
v(θ) dQ(θ) +

1

2

∫∫
κPn (θ, ϑ) dQ(θ)dQ(ϑ),

and where q and q0 are respectively densities for Q and Q0.

Wasserstein Gradient Flow
For the entropy-regularised functional Fn (2), we can simulate a Wasserstein gradient
flow via a McKean–Vlasov process [Ambrosio et al., 2008]

dθt = −∇WEn(Qt)(θt) +
√

2λndWt , (3)

∇WEn(Qt)(θt) = ∇v(θt) +

∫
∇1κPn (θt , ϑ) dQ

t(ϑ)

where Qt = law(θt), ∇W denotes the Wasserstein gradient, (Wt)t≥0 is a Wiener
process on Rp and, for the bivariate function κPn , the notation ∇1κPn denotes
differentiation with respect to the first argument.
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where the free energy En(Q) is identical, after algebraic manipulation, to

En(Q)
+C
=

∫
v(θ) dQ(θ) +

1

2

∫∫
κPn (θ, ϑ) dQ(θ)dQ(ϑ),

and where q and q0 are respectively densities for Q and Q0.

Simulation as an Interacting Particle System
Discretise Qt into a system of N evolving particles θ1t , θ

2
t , . . . , θ

N
t , whose evolution is

governed by the following system of stochastic differential equations (SDEs):

dθit =−
(
∇v(θit) +

1

N − 1

∑
j ̸=i

∇1κPn (θ
i
t , θ

j
t)

)
dt +

√
2λndW

i
t ,

where (W i
t )t≥0 are N independent Wiener processes on Rp . An Euler–Maruyama

discretisation incurs per-iteration computational complexity O(nN2) and storage
complexity (with caching) of O(n + N).



Approximating Qn via Gradient Flow

−2.2

−2.0

−1.8

θ 1
PCUQ (n = 5) PCUQ (n = 10) PCUQ (n = 15)

0 2000 4000

its

−4.10

−4.05

−4.00

−3.95

−3.90

θ 2

0 2000 4000

its
0 2000 4000

its

Figure: Interacting particle system for approximation of Qn. (N = number of particles used)

Convergence of the Gradient Flow
Though theoretically convex, in practice gradients are small in low probability region;
we mitigated this by initialising close to the Bayesian MAP θ†.
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Extension to Dependent Data

▶ each yi is associated with a covariate xi ∈ X and generated according to an
(unknown) conditional distribution P⋆(·|xi )

▶ have a conditional model {Pθ(·|x)}θ∈Θ for each x ∈ X

Idea: Suppose that [Alquier and Gerber, 2024]

{(xi , yi )}ni=1
iid∼ P̄⋆(dx , dy) :=

1

n

n∑
i=1

δxi (dx) P0(dy |xi )

and consider the extended model

P̄θ(dx ,dy) :=
1

n

n∑
i=1

δxi (dx) Pθ(dy |xi ).
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The main claims:

▶ There is a need for post-Bayesian methods to meet the needs of scientific
communities for whom “model” ̸= “statistical model”.

▶ Methodology should probably be tailored to specific communities.

▶ Prediction-centric approaches are not new, but they are an interesting alternative
to generalised Bayes!

Notable omissions:

▶ Bayesian exponentially tilted empirical likelihood, conformal prediction,
martingale posteriors (next chapter!), ...

If you would like to read more about our approach:
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