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A story of three papers1

[Bissiri et al., 2016] – General Bayes

[Lyddon et al., 2018] [Lyddon et al., 2019] – Loss-likelihood Bootstrap

[Fong et al., 2023] – Martingale Posteriors

1and friendship, in particular with Stephen Walker; students Pier Giovanni Bissiri,
Simon Lyddon, Edwin Fong
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Bissiri, Holmes, & Walker, A general framework

for updating belief distributions. JRSS-B.

(2016)

Stephen and I started discussing the idea in 2009 during the second week
of the Bayesian Nonparametric workshop (BNP-7) in Turin – it was very
exciting

To paraphrase the question Stephen posed:

“Suppose you have beliefs about some parameter, θ, not necessarily
indexing a likelihood function, and information (data), y , relevant for
learning about the parameter. If you’re willing to entertain an update,
then what are the necessary properties of the update in the general setting
outside of a likelihood-prior construction.”

{π(θ), y} → πu(θ)
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Example: estimating the median

Suppose you’re interested in inferring the population median of heights of
children

The first thing to note is the targeted nature of the question wrt a
particular parameter (statistic) of the population

θ0 = argmin
θ∈Θ

∫
l(θ, y) dF0(y)

for some population distribution F0(y) and loss-function l(·, ·) targeting
the parameter of interest, e.g. absolute loss in this case l(θ, y) = |θ − y |

This introduces the notion of an estimand, θ0, the object you are trying to
estimate
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Inference

You have some data from independent samples of children

Child 1 2 3 4 5

Height (cm) 120 125 130 135 140

and beliefs of plausible values of the median based on knowledge of
children, π(θ)

We assume that combining the information in π(θ) and the data is possible
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“These Bayesians are crazy”

The Bayesian solution solves a more general problem [Vapnik, 1998]

You first specify a sampling distribution (model) for the data

fθ(y)

with some parameters θ, potentially different and of higher dimension to
the target estimand, θ0

You define a prior on the model parameters, π(θ), before collecting data

Update using Bayes rule

π(θ | y) ∝ fθ(y)π(θ)

Recover posterior beliefs on the estimand by assuming that the model is
true FM =

∫
α Fα(·)π(α | y) dα, where FM is a proxy for F0, following

which you calculate beliefs on θ0
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Bayes

Bayesian analysis separates out the modelling of the data from the target
of inference

sometimes this is a strength if you wish to ask many questions

but translating beliefs about the estimand into beliefs about model
parameters is non-trivial, e.g. [Bornn et al., 2019]

solves a more general problem in order to provide direct uncertainty
on the value of the estimand

In General Bayesian updating we were seeking an update directly on the
target parameter, bypassing the need for a full sampling distribution
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Additive information

If prior beliefs on the value of the estimand, π(θ), and data are
independent, then the information needs to be additive

This, surprisingly, leads to a unique solution for coherent updating,
namely, given three pieces of information {π(θ), y1, y2}
Then, for coherent updating, the sequential update

{π(θ), y1} → π1(θ)

{π1(θ), y2} → π1,2(θ) (1)

and the joint update

{π(θ), y1, y2} → π1,2(θ) (2)

Must be equivalent under all settings
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Coherent Updating

It turns out that the unique update with this property [Bissiri et al., 2016]
is provided by

πu(θ) ∝ π(θ) exp[−
∑
i

l(θ, yi )]

and given that the loss-function has arbitrary scaling we have

πu(θ) ∝ π(θ) exp[−α
∑
i

l(θ, yi )]

where α is a free parameter related to the information in the data relative
to the information in π(θ)
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Supra-Bayesian pooling

The solution has exactly the same form as a Gibbs Posterior [Zhang, 2006]

The Gibbs Posterior is derived as an upper bound on the expected
predictive risk from a randomized algorithm – where θ indexes a prediction
model and the user samples θ ∼ πu(θ) and observes the loss

∑
i l(θ, yi )

This isn’t Bayesian prediction

Interesting result, and same solution

If we view {π(θ), y} as separate pieces of information that we want to
combine, then we can view the General Bayes update as a Supra-Bayesian
operation, leading to geometric (logarithmic) pooling of beliefs
[Genest et al., 1986, Genst and McConway, 1999]

We didn’t cite McConway in [Bissiri et al., 2016] :(
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How to set the learning rate?

In conventional Bayes you define the joint distribution, p(θ, y), a priori and
then the learning rate is fixed and information processing is optimal
[Zellner, 1988]

Posterior sufficiency of π(θ | y) – you can throw away the data

But you have to define a joint distribution and assume that it’s true

Non-Bayesians have a hard time in viewing θ as a random variable

When you don’t have a joint distribution, and you wish to use a General
Bayes update, then you need to fix the learning rate, α

This is especially tricky when the target, θ0, is multi-dimensional
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Calibration of learning

We needed a way to calibrate the information in the data, so as to specify
α in the loss-likelihood, exp[−α

∑
i l(θ, yi )]

I recall we were looking at methods in “Objective Bayes” but,
unsurprisingly, all use self-information loss (negative log-likelihood from a
full sampling distribution), and we were trying to get away from likelihoods

Methods in Bayesian nonparametrics drew us to the Weighted-Likelihood
Bootstrap [Newton and Raftery, 1994], a computational method that uses
the Bayesian bootstrap to approximate a Bayes posterior (without a prior)

The original paper received some criticism as a method for
approximation, as MCMC was just emerging

We didn’t care about that as we weren’t looking for an approximation
to a Bayes posterior

Method is purely data driven

GB ↔ MP, April 2025 12 / 34



Weighted Likelihood Bootstrap

The WLB draws samples, θ(j) according to

w (j) ∼ Dirn(1, . . . , 1)

θ(j) = argmin
θ
−
∑
i

wi log fθ(yi )

where w is a draw from the Bayesian Bootstrap [Rubin, 1981]

The method is ‘prior free’, in that you couldn’t use a prior with it, which is
what we wanted, and had good asymptotic properties

We can replace the self-information loss with a general loss function to
create a loss-likelihood bootstrap with

θ(j) = argmin
θ
−
∑
i

wi l(θ, yi )

And then calibrate the General Bayes learning rate, α by, say, moment
matching exp[−α

∑
i l(θ, yi )] to samples {θ(j)}j=1:J [Lyddon et al., 2019]
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Bayesian Bootstrap is amazing!

We started by looking for a way to set α̂, which lead us to the Bayesian
Bootstrap, which turned out to be more interesting (in many ways) than
the original task

The WLP has lower predictive risk, asymptotically, than the corresponding
Bayesian model when inM-open [Lyddon et al., 2018]; using a result
from [Fushiki, 2005]

The BB is also studied outside of a Bayesian context, and without
reference to [Rubin, 1981], where it’s used to derive confidence
intervals for Z-estimators, and shown to be more widely applicable
than Efron’s Bootstrap [Jin et al., 2001], requiring fewer assumptions

There’s also a simple way to incorporate prior beliefs into the WLB using
auxiliary, synthetic data, drawn from a prior predictive and combined with
the real data, and re-weighted accordingly, [Lyddon et al., 2018]
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The Bayesian bootstrap

The BB is quite widely known, but not well understood

derived as the limiting distribution under a Dirichlet Process
DP(c ,G ), with base measure G and concentration parameter c → 0

The BB and WLB seemed a bit opaque, and connections to Efron’s
bootstrap are unclear

For us, the key insight into its working came from the Polya urn
representation of the DP by [Blackwell and MacQueen, 1973], as sampling
with replacement from the empirical distribution Pn
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Bayesin bootstrap as a joint predictive

Starting from the empirical distribution function, Pn, as a nonparametric
‘prior free’ predictive.
Leading to the 1-step predictive:

p(yN+1 | y1:N) =
1

N

N∑
i=1

δyi

for N = n, n + 1, . . . ,∞, which reinforces an atom at a sampled value

This is a Pólya urn scheme with replacement, leading to a randomized
empirical distribution function [Blackwell and MacQueen, 1973]

F∞ := lim
N→∞

1

N

N∑
i=1

δyi =
n∑

i=1

wiδyi

with w1:n ∼ Dirichlet(1, . . . , 1).

Picking off the parameter of interest θ(F∞) gives us the Bayesian
Bootstrap [Rubin, 1981], where θ(·) is an estimator
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Bootstraps

Algorithm 1: Bayesian boot-
strap

Set Fn from observed data y1:n
for j ← 1 to B do

for i ← n + 1 to ∞ do
Sample Yi ∼ Fi−1

Update Fi ← [ {Fi−1,Yi}
end
Compute F∞ from
{y1:n,Yn+1:∞}

Evaluate θ
(j)
∞ = θ(F∞)

end

Return {θ(1)∞ , . . . , θ
(B)
∞ }

Algorithm 2: Efron’s boot-
strap

Set Fn from observed data y1:n
for j ← 1 to B do

for i ← 1 to n do
Sample Y ∗

i ∼ Fn

No update to Fn

end
Compute F ∗

n from {Y ∗
1:n}

Evaluate θ
(j)
n = θ(F ∗

n )
end

Return {θ(1)n , . . . , θ
(B)
n }

where θ(·) is an estimator targeting the estimand

Note – in the Bayesian boostrap we don’t actually have to simulate
i ← n + 1 to ∞ as we know the limiting distribution is a DP
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Bayes analysis as predictive inference

Conventional Bayesian analysis has a similar predictive representation,
where posterior uncertainty, p(θ | y1:n), arises from missing information
through the data you don’t have

{y1:n,Yn+1:∞}

The missing information can be imputed through one-step posterior
predictives

yj ∼ p(y | y1:j−1)

for j = n + 1 :∞, where p(· | y) =
∫
fθ(·)π(θ | y) ds

The key connection is through [Doob, 1949]
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Doob

From the imputed population, we compute the parameter estimate2

θ∞ = θ(Y1:∞)

which has a distribution conditional on y1:n, induced by Yn+1:∞.
If we keep going generating ever more samples

Key result: From Doob’s consistency theorem, if we use a conventional
Bayes posterior predictive then θ∞ ∼ π(θ | y1:n).

2Specifically, the posterior mean θ̄(Y1:N) =
∫

θ dπ(θ | Y1:N)
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All of inference as missing data

The predictive view makes clear the essential distinction between Bayes
and Frequentist inference

Frequentist uncertainty considers variability arising from

θ(Y1:n)

with estimator θ(·) and Yi ∼iid F0(y)

Bayesian uncertainty considers

θ(y1:n,Yn+1:∞)

for Yn+1:∞ jointly from F0

They both have the same target estimand and same estimator
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All of inference as missing data

Frequentist uncertainty considers

θ(Y1:n); Yi ∼iid F0(y)

Bayesian uncertainty considers

θ(y1:n,Yn+1:∞); Yn+1:∞ ∼joint F0

Frequentists consider indirect uncertainty in the estimand value through
variability in the estimator following replicate draws of size n

Bayesians consider direct uncertainty on the population parameter of
interest, targeted by the estimator through the missing yn+1:∞

They answer different questions. Bayes answers a harder question, and a
more important question

**The prior doesn’t enter into the distinction – it’s a distraction**
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Reframing the question

Viewed this way, one way to obtain Bayesian uncertainty on θ is through a
joint predictive that conditions on the data you have

p(Yn+1:N | y1:n)

Nothing is a priori, and allows for

model checking

cross-validation

This comes at a price – careful of data dipping, and care in how to
construct the joint predictive if not using a likelihood-prior

This was the key motivation for [Fong et al., 2023], in weakening the
conditions of exchangeability
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The role of prior knowledge

The starting point of the analysis is the conditional predictive p(ymis | yobs)

**We don’t care about defining a prior on data that has already been
observed**

Why model what you have, you have it? Model what you don’t have
but need to answer the question

Expert judgement goes into defining a predictive model given all available
information and existing data

Prior elicitation becomes predictive model evaluation/selection: where
objective criteria are well developed and accepted

The search for objective priors becomes a search for objective predictives
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Constructing a Predictive

Consider the Bayesian joint predictive under a prequential factorization:

p(yn+1:∞ | y1:n) =
∞∏

i=n+1

p(yi | y1:i−1).

This factorization is simple law of probability that p(a, b) = p(a | b) p(b)

From which we can impute Yn+1:∞ ∼ p(yn+1:∞ | y1:n) through the
recursion

1. Draw Yn+1 ∼ p(y | y1:n)
2. Draw Yn+2 ∼ p(y | y1:n,Yn+1) from the updated predictive, ...., etc

This constructive specification for the joint requires a 1-step predictive
p(yn+1 | y1:n) AND the update p(yn+2 | y1:n, yn+1)
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Imputation through Predictive Resampling

To generate the Yn+1:∞ we use a sequential imputation algorithm for
pi = p(yi+1 | y1:i ), that we call predictive resampling:

Algorithm 3: Predictive Resampling

Compute predictive pn from the observed data y1:n
N > n is a large integer

for i ← n + 1 to N do
Sample Yi ∼ pi−1

Update pi ← [ {pi−1,Yi}
end
Evaluate θN = θ(Y1:N)

N is set large enough to yield no relevant uncertainty in
the parameter of interest, θ, meaning in the context of
a particular analysis for all practical purposes the con-
ditional posterior can be replaced with a point estimate
π(θ | y1:N) = 1θ(y1:N )
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Comments on predictive resampling

The starting point of pn = p(yn+1 | y1:n) violates “coherent” belief
updating

The update to the predictive pi at each step necessitates the need for
efficient online, continual, learning (model updating)

The algorithm is trivially parallel across samples of θN

Can extended to use maximum likelihood predictives at each step
[Holmes and Walker, 2023], and also to model uncertainty using a
consistent model selection criteria at each step [Shirvaikar et al., 2024]
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Joint predictives

We need the joint predictive p(ymis | yobs) in order to obtain π(θ | yobs)

Likelihood-prior:
provides coherent updating and a short-cut to obtain π(θ | y1:n)
directly through Bayes rule
need to define the prior-likelihood before you’ve seen any data

Predictive-updating:
more general, allows one to use all of the data to construct the best
predictive – nothing a priori
need to check for a resulting valid joint distribution (convergence and
martingale conditions) and compute updates

Not claiming that Martingale posteriors are universally better, rather, they
offer a different perspective and can sometimes be useful
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Re-targeting

A final note on the story

Exploring the properties of the Bayesian bootstrap moved us away from
General Bayesian updating towards predictive inference and Martingale
posteriors

However, if interest is on a specific θ0, such as a median, then having to
construct a joint model for p(Yn+1:∞ | y1:n) may seem wasteful

Moreover, inductive bias in the choice of the predictive model for
p(Yn+1:∞ | y1:n) may affect inference for our target π(θ | y1:n)

[Yiu et al., 2025] considers posterior targeting taking the posterior
marginal π(θ | y1:n) and re-focusing it using semi-parametric inference,
using the Bayesian bootstrap!
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Conclusions I

General Bayes [Bissiri et al., 2016] relaxed theM-closed model framework
to allow for robust inference on low dimensional targets

Provides direct uncertainty on the estimand π(θ | y1:n)

Setting the learning rate in GB is hard, and led to the development of the
loss-likelihood bootstrap [Lyddon et al., 2018, Lyddon et al., 2019], using
the Bayesian bootstrap with synthetic data as a ‘prior’

The [Blackwell and MacQueen, 1973] representation of the BB provides
insight into what the BB is doing, through predictive re-sampling, and
[Doob, 1949] shows this is also true of conventional Bayes, allowing for
more general constructions [Fong et al., 2023]
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Conclusions II

Predictive inference places frequentist uncertainty, θ(Y1:n), and Bayesian
uncertainty, θ({y1:n,Yn+1:∞}), on an equal footing – making clear the
essential distinction (which doesn’t involve a prior)

Allows for more general constructions starting with the data you have
[Fong et al., 2023], but more care is needed than using a likelihood-prior

Posterior corrections can correct for inductive bias in the model predictive
that affect a targeted inference for a particular estimand [Yiu et al., 2025]

Thank you!
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